This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 16.6 Simple harmonic oscillations with springs Goal: Be able to solve problems involving the simple harmonic oscillations of a spring system. Remember for simple harmonic motion we must have a force that is linear in x, always toward equilibrium: F = m a = m ω 2 x So, always for SHM: a (t) = ω 2 x (t) Comparing the force equation for a spring given by Hooke’s law (F = − kx) with the equation of motion of a simple harmonic oscillator (F = − m ω 2 x), we find − kx= − m ω 2 which gives the angular frequency ω of a spring’s oscillation as: ω = (k/m) 1/2 The position of the spring load as a function of time is given by the equation for the position of a simple harmonic oscillator: x(t) = Asin θ (t) = Asin( ω t + φ ) The amplitude A and phase constant φ are determined by the problem’s initial conditions. Example: A strong spring, with a .5kg object attached to the end, is suspended from the ceiling and stretches 1.0cm. The object is then lifted 2.0cm from this new equilibrium position and released from stretches 1....
View
Full
Document
This note was uploaded on 05/04/2008 for the course PHYS 2054 taught by Professor Stewart during the Spring '08 term at Arkansas.
 Spring '08
 Stewart
 Physics, Force, Simple Harmonic Motion

Click to edit the document details