120_10.5_notes

120_10.5_notes - Mat120 Chapter 10 - Section 5 Page 15...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mat120 Chapter 10 - Section 5 Page 15 Factoring Special Forms THE DIFFERSNCE TWO- SQUARES IfA and B are-real numbers. variables. or ' algebraic éxprémions, than A! ~31 = (A + B}(A —3). In wordsfl'he difference of the squares of two temis factors as the product of a sum and a difference of those terms. Examples: a. 4x1 — 81 b. 9):“ — lfiy‘ 4x ‘7 36¢“ 4932' (4x4) (‘HHL‘H (3)364?” (9";"4'3’v Textbook Problems: 4. 41::2 — 9 6. 16 — 49y2 2.x 3 H 1i (2.x-5)(a.x+3) (‘1_7,1)(q +761) 8' 6432 ' 253’: 14. x‘ —- y“; 5. (3X+5g)(s)X—-5$L) (x’i‘g‘—}(X+g’j 16 (ax—6)2 — y’ 18 az — (II—3): (x—L) 9 0:. (19—3) (fx-«o3+‘1)(h““')"°’) (CL’I‘Cb’b‘Ha’th—M) Mat120 Chapter 10 - Section 5 Page 16 24. 2x3 — 72x 32. 4a-"c2 - 16 axzy’ axwz—SG) 1m(ofc'=-Lf x29" ) X to ac 2.33 an (’K+":)(X">) LfaLaL—Ax‘jwamelxa) Perfect trinomial Squares: Handle them like regular trinomials 50. 18+ 2:: +1 52. x1—14x+49 (mme (x—vwx—fl FACTOR‘ING THE SUM AND DIFFERENCE OF TWO CUBE‘S l. Factoring the Sum :3me Cubes A3 + B3 = (A.+ BmF —- AB + 32) M U Same sign Opposite signs 2. Factormg the Difim’mce (3me cubes A3—Ba=(A—B][A2+AB+BZJ U U Same Sign Opposite signs Mat120 Chapter 10 — Section 5 Page 17 Factoring Special Forms A3 +B3 = (A+B)(A2—AB+B2) A3—B3 = (A—B)(A2+AB+B2) r1 76. x3 + 1 so. 275,3 + 1 flax 6:21;, 3% I Hflflfiirivii )- z m”) mtpraw) '(39+n)( (533:3 33"“ ) (Xi-l) (XaJNX'I‘f'lL) (35+chfla‘w33‘H) (x+1) (X’LXH) 82 27x3 _ s 84. xays + 64 3X 2. X Y Li! 63—6) (mama) a WWW: WM 4;) (ax—,2) ((axwaxtm—a) ( } % W (ax—,1) (9x940 xw) XYW) (X9 +4x\{+ 3 86. 216x — x4 90. 125x61: y“; X04048) 5X V [a 2.. i“ '9’), x a i) (fxtaMéflQ/Mfi‘a +1 J) X((a—~><\(Cv—6’v‘>‘+x A..;L X a-“ (39+c><+><‘°”) ...
View Full Document

This note was uploaded on 05/05/2008 for the course MAT 120/222/10 taught by Professor None during the Spring '08 term at ASU.

Page1 / 3

120_10.5_notes - Mat120 Chapter 10 - Section 5 Page 15...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online