{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

120_11.5_notes - Mat 1 20 Chapter 11 Section 5 DEVELOPING...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: / Mat 1 20 Chapter 11 - Section 5 DEVELOPING THE PROCESS: WM) W flaw? Page ‘ 20 Mat120 Chapter 11 - Section 5 Page 122 1 Synthetic Division smmrnc DiVZSiON To divide a polynomial by x a c: , , x v ‘ . Example 1‘. Arrange polfnomiels' in descending powers, with a 0 mafficient for any x - 3)x5 + 4x! — 5x + 5 missing term. .~ 2. Write 6 Ear the diviser, 1:. ~ 6 To the E] 1 4 ”5 5 i right write the coefficients of the. dividend » - - '3. Write the leading coeffieient of the J 1 4 -5 5 _ dividend on the bottom row [V , 1' 1 Bring dowel ’ 1 4. Multiply c (in this we 3) times the _31 1 4 .5 5 * value just written on the bottom row, " :’ write the product 1n the next column kw .mthe second row , Hummus: 3 1:3. 15.,Add the values in this new column 2| 1 4 .5 5 writing the mm in the bottom raw 3 I Add. ,4 . 1 7 6. Repeat this series of multiplications 3 1 4 .5 5 and additions until all columns are _ _. 3 21 Add. I Hilltipljb13: 3 =7 2 1'1; _3] 1 4 —5 5 3 21 3 Add 1 7 16 53 Mutual} 1133: 3 46: 4B. 7. _,Use the numbers in the last row tn write ,. ”1“,,me ‘ the quotient, plus the remainder above 1 I 16 53 the divison'l'he aw oflle first term 1t: last run of in Win division ufthequotiemisonelemthanthedegree _ 2 , 53 nfthe first term of‘the divilmldflhe final . 1 1 _ x~3 rvaluemtlnsmwmtheremamder. , xt_3W—’ / Mat120 Chapter 11 - Section 5 / Page 2.2.. / EXAMPLES: I l ~3— 5‘ «(A -$’ 2[x+.t-—2)—'—[x—l) 4.(5x3v12x~5)~(x+3) +1 '3 5- _<. 3 ll 6.(5x3~6x2+3x+11}+(x—2) l «+ 0" 8.(.t5+4x‘€3x2+2x+3)+(.::——3) 4‘5 2. 3 3 3W? 7 at éO /XQ~ 5‘I7L7 XM+7X +th+éox+1m IQ 57,9) Mat120 Chapter 11 - Section 5 Synthetic Division 12. (2x‘~x3+2x2~3x+1)+(x—l) 2 1 «l 1‘3 \ i if/g ,1 :2. ~5 1 J/ 1 o ‘ *( ax? + ox1 +3\x -—9.. RW) ( 2X 315220 A > x‘! OKLO)‘ OX“ / 14. x’fl’xS ~ 1(1ng 12 x+2 Page ’3. '5 ...
View Full Document

{[ snackBarMessage ]}