{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

120_11.5_notes

# 120_11.5_notes - Mat 1 20 Chapter 11 Section 5 DEVELOPING...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: / Mat 1 20 Chapter 11 - Section 5 DEVELOPING THE PROCESS: WM) W ﬂaw? Page ‘ 20 Mat120 Chapter 11 - Section 5 Page 122 1 Synthetic Division smmrnc DiVZSiON To divide a polynomial by x a c: , , x v ‘ . Example 1‘. Arrange polfnomiels' in descending powers, with a 0 mafﬁcient for any x - 3)x5 + 4x! — 5x + 5 missing term. .~ 2. Write 6 Ear the diviser, 1:. ~ 6 To the E] 1 4 ”5 5 i right write the coefﬁcients of the. dividend » - - '3. Write the leading coefﬁeient of the J 1 4 -5 5 _ dividend on the bottom row [V , 1' 1 Bring dowel ’ 1 4. Multiply c (in this we 3) times the _31 1 4 .5 5 * value just written on the bottom row, " :’ write the product 1n the next column kw .mthe second row , Hummus: 3 1:3. 15.,Add the values in this new column 2| 1 4 .5 5 writing the mm in the bottom raw 3 I Add. ,4 . 1 7 6. Repeat this series of multiplications 3 1 4 .5 5 and additions until all columns are _ _. 3 21 Add. I Hilltipljb13: 3 =7 2 1'1; _3] 1 4 —5 5 3 21 3 Add 1 7 16 53 Mutual} 1133: 3 46: 4B. 7. _,Use the numbers in the last row tn write ,. ”1“,,me ‘ the quotient, plus the remainder above 1 I 16 53 the divison'l'he aw oflle ﬁrst term 1t: last run of in Win division ufthequotiemisonelemthanthedegree _ 2 , 53 nfthe ﬁrst term of‘the divilmldflhe ﬁnal . 1 1 _ x~3 rvaluemtlnsmwmtheremamder. , xt_3W—’ / Mat120 Chapter 11 - Section 5 / Page 2.2.. / EXAMPLES: I l ~3— 5‘ «(A -\$’ 2[x+.t-—2)—'—[x—l) 4.(5x3v12x~5)~(x+3) +1 '3 5- _<. 3 ll 6.(5x3~6x2+3x+11}+(x—2) l «+ 0" 8.(.t5+4x‘€3x2+2x+3)+(.::——3) 4‘5 2. 3 3 3W? 7 at éO /XQ~ 5‘I7L7 XM+7X +th+éox+1m IQ 57,9) Mat120 Chapter 11 - Section 5 Synthetic Division 12. (2x‘~x3+2x2~3x+1)+(x—l) 2 1 «l 1‘3 \ i if/g ,1 :2. ~5 1 J/ 1 o ‘ *( ax? + ox1 +3\x -—9.. RW) ( 2X 315220 A > x‘! OKLO)‘ OX“ / 14. x’ﬂ’xS ~ 1(1ng 12 x+2 Page ’3. '5 ...
View Full Document

{[ snackBarMessage ]}