120_12.2_notes

120_12.2_notes - \‘Y Matlzonzl Chapter I - Section 2 Page...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: \‘Y Matlzonzl Chapter I - Section 2 Page ' S Rational Exponents DEFINITION OF A RATIONAL EXPONENT: I THE DEFINITION OF 0‘7 If represents a real number and n 2 2 is an integer. then L_,, a"— . Tum-unfuamnul mu isllulliui‘lifil. If a is negative. :1 must be odd. If a is nannegativem'can be my index. Use radical notation to rewrite each expression. Simplify. if possible: a. 64% b. (—1231: c. (5h)? 5 _ 5 Wt WM Mom. 3 -— i" In General: THE DEFINITION OF 0% If «5 represents a real number, § is a positive ratioml numba' reduced to lowest terms. and n 2 2 is an integer. then m Fimnhfln a? = (m mums. and a? = final. Filltrlila utllmpunr. From the Textbook: .1. % 1' 1 l 2. 1002 4- ("54) a. mu m. and)! 12. 252 M 6/17? -1- We? 55H" W75? xo —-‘1 -—«I ' 3 (/(asms— \Y Mat12D! 121 Chapter U - Section 2 Page 9 6 In Exercises 2!- 38. rewrite each expansion with mama! erpomm 2-1. fili- 26. 9—1:) 28. Vi 32. ‘ 3; 41¢? V ‘5‘ /:- 7 7... (‘9 (152 X 4X; 3/: PROPERTIES OF RATIONAL EXPONENTS If m and n are rational expomnteand a and b are real mmbers for which the following expressions are defined. then 1. tam-b” = b'”'”' When multiplying exponential expressions with the same base, add the exponents. Use this sum as the exponent of the common base. 1;" __ m When dividing exponential expressions with the same base 2' F _ b” subtract the exponents. Use this difference the exponent of the common base. 3. (b‘)" = b” When an exponential expression is raised to a power. multiply the exponents Place the product ofthe exprments on the base and remove the parentheses I. Orb)" = 0"b" When a product is raised to a power, raise each factor to that power and multiply. 5 (fly 2 fl When a quotient is raised to a power. raise the numerator to ' b b" that power and divide by the denominator to that power. In Emerge; 39- 54. mm each 9113mm m a positive mama! expmem. Simpflflttfpnflfle 42. 125"i 43, 32"; .13, (+29% so. (—-a)'% l ——L-7/; *ng :- C (-8)) [35' .33 W I —-J—’—~ 7:3: I ._. L) H __ 3 M” (‘9 9‘ 3 —Lv~‘= K \‘Y Mat120/121 ChapterG - Section 2 Page 6 '7 Rational Exponents q%{fixm$ 55— f8. useme arwmaxmm mflmflfir ' each 9.7mm; Assm {M' N! Emma; mm pawn? 17m 3 l 100% 1 =2- 56. 53'53 58‘ 56 £2,913 a: 3 +“L 1:103 5+ 5 ,3. A ‘f ; _{_ 1 S— 3 :1 5—. /00 a 0 if X 100/ 1 loo 2. X o W70 /0 l 68‘ v“; I 73» (lzixgyggé) L 74. (53%} I ‘ 21%) us 3 x (at 71.; ,é. .11.} 3 s v 3/" x% 3" X 3 u .. _. 73 3 a .1. 3-. s 5— xag“ X" vow“ 3” fl: :31 14 1—6 3 75-53-193 3'8 8,13%: 53-1 ‘ ya 3/“, %+;*; 3 51 z 3:975 5 =5 lbg 3’3". [(0 fl /0 a *2; ‘5}; A I 2 Mat120/ 121 Chapter9- Section 2 In Exam 2? 112: we manna! axpmmts :9 mm enact: Wmm Emma} maxim awmgflmm. amp the m :11 1mm mam}. Ame first at! mm 19pm: gunfire mm mi??? 2. ‘ C X 7"; x3“ (Yaw so EYE)“ 92 . (a V4 (Glad/g (X3? 5. 3‘; *2, gay Xlgé (My? X (7* 7.. , 3, V 5 ...
View Full Document

Page1 / 4

120_12.2_notes - \‘Y Matlzonzl Chapter I - Section 2 Page...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online