120_12.2_notes

# 120_12.2_notes - \‘Y Matlzonzl Chapter I Section 2 Page S...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: \‘Y Matlzonzl Chapter I - Section 2 Page ' S Rational Exponents DEFINITION OF A RATIONAL EXPONENT: I THE DEFINITION OF 0‘7 If represents a real number and n 2 2 is an integer. then L_,, a"— . Tum-unfuamnul mu isllulliui‘liﬁl. If a is negative. :1 must be odd. If a is nannegativem'can be my index. Use radical notation to rewrite each expression. Simplify. if possible: a. 64% b. (—1231: c. (5h)? 5 _ 5 Wt WM Mom. 3 -— i" In General: THE DEFINITION OF 0% If «5 represents a real number, § is a positive ratioml numba' reduced to lowest terms. and n 2 2 is an integer. then m Fimnhﬂn a? = (m mums. and a? = final. Filltrlila utllmpunr. From the Textbook: .1. % 1' 1 l 2. 1002 4- ("54) a. mu m. and)! 12. 252 M 6/17? -1- We? 55H" W75? xo —-‘1 -—«I ' 3 (/(asms— \Y Mat12D! 121 Chapter U - Section 2 Page 9 6 In Exercises 2!- 38. rewrite each expansion with mama! erpomm 2-1. ﬁli- 26. 9—1:) 28. Vi 32. ‘ 3; 41¢? V ‘5‘ /:- 7 7... (‘9 (152 X 4X; 3/: PROPERTIES OF RATIONAL EXPONENTS If m and n are rational expomnteand a and b are real mmbers for which the following expressions are deﬁned. then 1. tam-b” = b'”'”' When multiplying exponential expressions with the same base, add the exponents. Use this sum as the exponent of the common base. 1;" __ m When dividing exponential expressions with the same base 2' F _ b” subtract the exponents. Use this difference the exponent of the common base. 3. (b‘)" = b” When an exponential expression is raised to a power. multiply the exponents Place the product ofthe exprments on the base and remove the parentheses I. Orb)" = 0"b" When a product is raised to a power, raise each factor to that power and multiply. 5 (ﬂy 2 ﬂ When a quotient is raised to a power. raise the numerator to ' b b" that power and divide by the denominator to that power. In Emerge; 39- 54. mm each 9113mm m a positive mama! expmem. Simpﬂﬂttfpnﬂﬂe 42. 125"i 43, 32"; .13, (+29% so. (—-a)'% l ——L-7/; *ng :- C (-8)) [35' .33 W I —-J—’—~ 7:3: I ._. L) H __ 3 M” (‘9 9‘ 3 —Lv~‘= K \‘Y Mat120/121 ChapterG - Section 2 Page 6 '7 Rational Exponents q%{ﬁxm\$ 55— f8. useme arwmaxmm mﬂmﬂﬁr ' each 9.7mm; Assm {M' N! Emma; mm pawn? 17m 3 l 100% 1 =2- 56. 53'53 58‘ 56 £2,913 a: 3 +“L 1:103 5+ 5 ,3. A ‘f ; _{_ 1 S— 3 :1 5—. /00 a 0 if X 100/ 1 loo 2. X o W70 /0 l 68‘ v“; I 73» (lzixgyggé) L 74. (53%} I ‘ 21%) us 3 x (at 71.; ,é. .11.} 3 s v 3/" x% 3" X 3 u .. _. 73 3 a .1. 3-. s 5— xag“ X" vow“ 3” fl: :31 14 1—6 3 75-53-193 3'8 8,13%: 53-1 ‘ ya 3/“, %+;*; 3 51 z 3:975 5 =5 lbg 3’3". [(0 ﬂ /0 a *2; ‘5}; A I 2 Mat120/ 121 Chapter9- Section 2 In Exam 2? 112: we manna! axpmmts :9 mm enact: Wmm Emma} maxim awmgﬂmm. amp the m :11 1mm mam}. Ame ﬁrst at! mm 19pm: gunﬁre mm mi??? 2. ‘ C X 7"; x3“ (Yaw so EYE)“ 92 . (a V4 (Glad/g (X3? 5. 3‘; *2, gay Xlgé (My? X (7* 7.. , 3, V 5 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

120_12.2_notes - \‘Y Matlzonzl Chapter I Section 2 Page S...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online