120_ch.9_review

# 120_ch.9_review - MAT120 Chapter 9 Test Practice Name...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAT120 Chapter 9 Test Practice Name___________________________________ Perform the indicated operation or operations. 1) (6 - 8)2(5 - 7)3 Simplify the algebraic expression. 2) 2 - 7[5 - (6x - 4)] Solve the equation. 3) r + 6 = r + 8 5 5 7 7 Solve the inequality. Express the solution set in set-builder notation and graph the set on a number line. 4) 35x - 20 5(6x - 13) Determine whether the ordered pair is a solution of the given equation. 5) (-5, -1) 4x + 3y = -23 1 of 4 Find the x- and y-intercepts for the equation. Then graph the equation. 6) 20y - 4x = -8 y 10 5 -10 -5 -5 5 10 x -10 x-Intercept:_____________________ y-Intercept:_____________________ Find the domain and range. 7) {(6,6), (5,5), (-6,-9), (-1,7), (-12,-2)} Domain:______________________________________ Range:_______________________________________ Decide whether the relation is a function. 8) {(-5, -5), (-1, 9), (1, -2), (1, -6)} A) function Use the graph to find the indicated function value. 9) y = f(x). Find f(-3) y 4 3 2 1 -4 -3 -2 -1 -1 -2 -3 -4 1 2 3 4 x B) not a function A) 9 B) -3 C) 3 D) 1.5 2 of 4 Find the indicated function value. 10) Find f(-4) when f(x) = x2 - 2x - 2. 11) Find g(a + 1) when g(x) = 4x + 2. Find the domain of the function. 12) f(x) = x - 3 x+7 13) f(x) = -9x + 5 Find the indicated function value. 14) f(x) = 5 - 7x, g(x) = -3x + 7 Find (f + g)(x). Find the requested value. 15) Find ( f )(-4) when f(x) = 5x - 7 and g(x) = 4x2 + 14x + 5. g 3 of 4 Answer Key Testname: 120_CH.9_REVIEW 1) -32 2) 42x - 61 3) {-1} 4) {x|x -9} -12 -11 -10 -9 -8 -7 -6 5) Yes 6) (0, - 2 ), (2, 0) 5 y 10 5 -10 -5 -5 5 10 x -10 7) domain = {6, -6, -12, -1, 5}; range = {6, -9, -2, 7, 5} 8) B 9) C 10) 22 11) 4a + 6 12) {xx is a real number and x -7} 13) {xx is a real number} 14) -10x + 12 15) - 27 13 4 of 4 ...
View Full Document

## This note was uploaded on 05/05/2008 for the course MAT 120/222/10 taught by Professor None during the Spring '08 term at ASU.

Ask a homework question - tutors are online