chapter 9 test key

chapter 9 test key - Mat120 - JACKY PETERSON - MATH Name 2...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mat120 - JACKY PETERSON - MATH Name 2 Test #1 - Chapters 9 Score: / Class Hour: Summer 2007 1. Use the order of operations to simplify the expression: 3(8—6)+3-8 _‘ 3m +4 __., 9121—3. =- 491. 19 3-(6—3) 363) ? Ci 3 1. ‘d‘_(3) a. E b. E“. c. .12 d. 19 9 5 15 3 2. a. Find the domain and range. ‘ {( 5. 8), (8, 2). (-7, 2), (-‘7. 9)} 2.___D__(3) 1 Rem-+14 K5 A) domain={5, -7, 8, 3}; range={8, —2, 2, 9} B) domain={5, -7, 8, —13};range={8, -2, 2, 9} domain = { 8, -2, 2, 9}; range = { 5, -7, 8} D) domain ={ 5, -7, 8}; range ={8, -2, 2, 9} b. Is the above set a function? I b. Yes (ENo X2) W K ‘5 Given the function, find the indicated value. 3. Find r( 2) when f(x) = -4x2 +3x +4. 3. C (3) A) 26 B) 14 C)-6 D) 2 - 1(a)3+3c.1)+‘+ =- ~Hr-f 0+‘1‘ =-‘ ‘(p 4. Use the vertical line test to determine whether or not the graph is a graph of a function. Mat 120 — Test #1 — Chapters 9 Page 5. Simplify each exponential expression below: 2x2y2 2 a. 3x_3y_2 J Sa.____i___(4) ‘f L! 4 ‘-l ‘4 4 H 4 Qflqs-w—fl—HX :L’XXBEJ EAX ‘3 9X4?” 9 qxzaflg ‘? 40.567 b, 5b. 6 (4) ~:> 5‘ 7 5‘ —-1 462. d 45L 5 C7 :3 5 6. Solve the following equations for x: a. 5x—(2x+ 2) =x+(3x-4) 6a. :3 92" (3) 5x—Ax—.A : x+3x~4 3x «at = 4x“! b. .7 H , (4) 7. Find the domain of the touowmg functions: w, m I1 a. f(x) = 3x2 — 2x + 3 6 ho dwmhwdvf‘ M63) .L b. f(x)=. “2 Denomunwhxr #0 X_ f: (3) 5“ yaw 4o 1, I K195 57K + 8. Given the graph of f(x) below, find the following: (3 points each) a. i(—3 ) «I (2) b. xfor which f(x) :1 “3' gal X’ 3“ b. 02* (2) c. Domain of f(x) 0. “5 .43 (2) d. Range of f(x) d. L“ 'i ‘1'] (2) e. What is the x-intercept? a = 0 “=3 e. C3; 0 ) (2) (Write your answer as an (x,y) coordinate point) f. What is the y-intercept? Ki” ’9‘ 3’ f. (0) 3 J (2) (Write your answer as an (x,y) coordinate point) 9. For the following problems let f(x) = 3x + 2 , g(x)=J3£ a Find): Vf(a+4) 7 a. 30‘7L/5/ 7(3) '3ca.+t+)+&~ 3¢+ia+a= 3W” 3(9)“ b. Find: (f + g) (9) : 430%) + 9 cc” b-————‘—3:2—‘——————(3) 13+» 3mm,- 29+ 5 ’— 1 A ’3 39x 0. Find: (Hg) (9) 2 fig-3 0?? 0. 9m) j (3) 10. e, estimate the x-intercept dinate point)? ‘j ao Using the graph abov (write as an (x,y) coor above, estimate the y-intercept coordinate point)? Xao (oz-‘1‘ 3 (2) Using the graph (write as an (x,y) intercept. (write as an (x,y) coordinate point) 11. Find the x—intercept and y- x—intercept: ( ‘7‘ g 0) (3) 9"En-lwu39): 4y=12 yam.“ rapt. '30 y: o y—intercept: C ‘32 '3 3 (3) 3(03—‘h3213. 3x-‘f(o)=|3~ -— '4 <3 30- :3 X = I). b 3-3 9' ‘7’ 12. a. Write the equation in slope intercept form 6x—‘3y=15 1} = .35 + 13 “a -’> *3 Mat 120 — Test #1 — Chapters 9 Page 13. Determine whether the given ordered pair is a solution to the system. 2, 5 V ( ) __/9__(2) 14. Solve the following system using the Graphical METHOD: (4 points) x — y = 1 a, x + y = 3 ‘— >( —- Y = v X o «l 1 O 15. Solve the following system using the SUBSTITUTION METHOD: __X= “’2‘ Y: fig x —- y = 4 3x -; 2y = 6 X: 4+5 X=L}+C~0) : (a :f " Q: % (4 + ‘3) " ‘9‘ (:5 X _ 1,; 4 '5 =3 F‘e‘fi "7 é v 161+ <5 ¢ ¢ Mat 120 - Test #1 - Chapters 9 Page 6 16. Solve the system using the ADDITION METHOD: e, _x= 9 v: 51 ._(4) 3x+2y :8 3H —x + y = 4\ .5 .+A<j::? — x~5%=—H_ -91—4 W4 3x+ac<w :? 3M? 2 V 3x30 ,(z: 0 19. identify each of the systems of linear equations as consistent, inconsistent, or dependent. State whether‘the system has exactly one solution, no solutions, or an infinite number of solutions. ( 1 point each) b. a. Type: consl‘S'l‘m'!‘ b. Type: c. Type: i~ Y) Con-$134654?" ' Number of Number of . Number of Solutions: 0 7‘ ‘9- Solutions: :EHL n 6 Solutions: V7 0’1 €- ...
View Full Document

This note was uploaded on 05/05/2008 for the course MAT 120/222/10 taught by Professor None during the Spring '08 term at ASU.

Page1 / 6

chapter 9 test key - Mat120 - JACKY PETERSON - MATH Name 2...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online