{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

m28YuBC9feHI_1210016459_jwk572

# m28YuBC9feHI_1210016459_jwk572 - midterm 04 – KIM JI –...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: midterm 04 – KIM, JI – Due: Dec 5 2007, 7:00 pm 1 Gravity vector F 21 =- G m 1 m 2 r 2 12 ˆ r 12 , for r ≥ R , g ( r ) = G M r 2 G = 6 . 67259 × 10 − 11 Nm 2 /kg 2 R earth = 6370 km, M earth = 5 . 98 × 10 24 kg Circular orbit: a c = v 2 r = ω 2 r = parenleftBig 2 π T parenrightBig 2 r = g ( r ) U =- G mM r , E = U + K =- GmM 2 r F =- dU dr =- mG M r 2 =- m v 2 r Kepler’s Laws of planetary motion: i ) elliptical orbit, r = r 1 − ǫ cos θ r 1 = r 1+ ǫ , r 2 = r 1 − ǫ ii ) L = r m Δ r ⊥ Δ t-→ Δ A Δ t = 1 2 r Δ r ⊥ Δ t = L 2 m = const. iii ) G M a 2 = parenleftBig 2 π a T parenrightBig 2 1 a , a = r 1 + r 2 2 , T 2 = parenleftBig 4 π 2 GM parenrightBig r 3 Escape kinetic energy: E = K + U ( R ) = 0 Fluid mechanics Pascal: P = F ⊥ 1 A 1 = F ⊥ 2 A 2 , 1 atm = 1 . 013 × 10 5 N/m 2 Archimedes: B = M g , Pascal=N/m 2 P = P atm + ρg h , with P = F ⊥ A and ρ = m V F = integraltext P dA-→ ρg ℓ integraltext h ( h- y ) dy Continuity equation: Av = constant Bernoulli: P + 1 2 ρv 2 + ρg y = const, P ≥ Oscillation motion f = 1 T , ω = 2 π T SHM: a = d 2 x dt 2 =- ω 2 x , α = d 2 θ dt 2 =- ω 2 θ x = x max cos( ω t + δ ), x max = A v =- v max sin( ω t + δ ), v max = ω A a =- a max cos( ω t + δ ) =- ω 2 x , a max = ω 2 A E = K + U = K max = 1 2 m ( ω A ) 2 = U max = 1 2 k A 2 Spring: ma =- k x Simple pendulum: ma θ = mαℓ =- mg sin θ Physical pendulum: τ = I α =- mg d sin θ Torsion pendulum: τ = I α =- κθ Wave motion Traveling waves: y = f ( x- v t ), y = f ( x + v t ) In the positive x direction: y = A sin( k x- ω t- φ ) T = 1 f , ω = 2 π T , k = 2 π λ , v = ω k = λ T Along a string: v = radicalBig F μ Reflection of wave: fixed end: phase inversion open end: same phase General: Δ E = Δ K + Δ U = Δ K max P = Δ E Δ t = 1 2 Δ m Δ t ( ωA ) 2 Waves: Δ m Δ t = Δ m Δ x · Δ x Δ t = Δ m Δ x · v P = 1 2 μv ( ω A ) 2 , with μ = Δ m Δ x Circular: Δ m Δ t = Δ m Δ A · Δ A Δ r · Δ r dt = Δ m Δ A · 2 π r v Spherical: Δ m Δ t = Δ m Δ V · 4 π r 2 v Sound v = radicalBig B ρ , s = s max cos( k x- ω t- φ ) Δ P =- B Δ V V =- B ∂s ∂x Δ P max = B κs max = ρv ω s max Piston: Δ m Δ t = Δ m Δ V · A Δ x Δ t = ρAv Intensity: I = P A = 1 2 ρv ( ω s max ) 2 Intensity level: β = 10log 10 I I , I = 10 − 12 W/m 2 Plane waves: ψ ( x,t ) = c sin( k x- ω t ) Circular waves: ψ ( r,t ) = c √ r sin( k r- ω t ) Spherical: ψ ( r,t ) = c r sin( k r- ω t ) Doppler effect: λ = v T , f = 1 T , f ′ = v ′ λ ′ Here v ′ = v sound ± v observer , is wave speed relative to moving observer and λ ′ = ( v sound ± v source ) /f , detected wave length established by moving source of frequency f . f received = f reflected Shock waves: Mach Number= v source v sound = 1 sin θ Superposition of waves Phase difference: sin( k x- ωt ) + sin( k x- ω t- φ ) Standing waves: sin( k x- ω t ) + sin( k x + ω t ) Beats: sin( kx- ω 1 t ) + sin( k x- ω...
View Full Document

{[ snackBarMessage ]}

### Page1 / 7

m28YuBC9feHI_1210016459_jwk572 - midterm 04 – KIM JI –...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online