This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: midterm 04 – KIM, JI – Due: May 2 2008, 10:00 am 1 E & M  Basic Physical Concepts Electric force and electric field Electric force between 2 point charges:  F  = k  q 1   q 2  r 2 k = 8 . 987551787 × 10 9 N m 2 /C 2 ǫ = 1 4 π k = 8 . 854187817 × 10 − 12 C 2 /N m 2 q p = − q e = 1 . 60217733 (49) × 10 − 19 C m p = 1 . 672623 (10) × 10 − 27 kg m e = 9 . 1093897 (54) × 10 − 31 kg Electric field: vector E = vector F q Point charge:  E  = k  Q  r 2 , vector E = vector E 1 + vector E 2 + ··· Field patterns: point charge, dipole, bardbl plates, rod, spheres, cylinders, ... Charge distributions: Linear charge density: λ = Δ Q Δ x Area charge density: σ A = Δ Q Δ A Surface charge density: σ surf = Δ Q surf Δ A Volume charge density: ρ = Δ Q Δ V Electric flux and Gauss’ law Flux: ΔΦ = E Δ A ⊥ = vector E · ˆ n Δ A Gauss law: Outgoing Flux from S, Φ S = Q enclosed ǫ Steps: to obtain electric field –Inspect vector E pattern and construct S –Find Φ s = contintegraltext surface vector E · d vector A = Q encl ǫ , solve for vector E Spherical: Φ s = 4 π r 2 E Cylindrical: Φ s = 2 π r ℓE Pill box: Φ s = E Δ A , 1 side; = 2 E Δ A , 2 sides Conductor: vector E in = 0, E bardbl surf = 0, E ⊥ surf = σ surf ǫ Potential Potential energy: Δ U = q Δ V 1 eV ≈ 1 . 6 × 10 − 19 J Positive charge moves from high V to low V Point charge: V = k Q r V = V 1 + V 2 = ... Energy of a chargepair: U = k q 1 q 2 r 12 Potential difference:  Δ V  =  E Δ s bardbl  , Δ V = − vector E · Δ vectors , V B − V A = − integraltext B A vector E · dvectors E = − d V dr , E x = − Δ V Δ x vextendsingle vextendsingle vextendsingle fix y,z = − ∂V ∂x , etc. Capacitances Q = C V Series: V = Q C eq = Q C 1 + Q C 2 + Q C 3 + ··· , Q = Q i Parallel: Q = C eq V = C 1 V + C 2 V + ··· , V = V i Parallel platecapacitor: C = Q V = Q E d = ǫ A d Energy: U = integraltext Q V dq = 1 2 Q 2 C , u = 1 2 ǫ E 2 Dielectrics: C = κC , U κ = 1 2 κ Q 2 C , u κ = 1 2 ǫ κE 2 κ Spherical capacitor: V = Q 4 π ǫ r 1 − Q 4 π ǫ r 2 Potential energy: U = − vector p · vector E Current and resistance Current: I = d Q dt = nq v d A Ohm’s law: V = I R , E = ρJ E = V ℓ , J = I A , R = ρℓ A Power: P = I V = V 2 R = I 2 R Thermal coefficient of ρ : α = Δ ρ ρ Δ T Motion of free electrons in an ideal conductor: aτ = v d → q E m τ = J n q → ρ = m n q 2 τ Direct current circuits V = I R Series: V = I R eq = I R 1 + I R 2 + I R 3 + ··· , I = I i Parallel: I = V R eq = V R 1 + V R 2 + V R 3 + ··· , V = V i Steps: in application of Kirchhoff’s Rules –Label currents: i 1 ,i 2 ,i 3 ,......
View
Full
Document
This note was uploaded on 05/05/2008 for the course PHY 303L taught by Professor Turner during the Spring '08 term at University of Texas.
 Spring '08
 Turner
 Physics, Charge, Force

Click to edit the document details