MAT318-QUIZ1

# MAT318-QUIZ1 - MAT 318 Instructor: Mike Wang NAME: AN\$WB£...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAT 318 Instructor: Mike Wang NAME: AN\$WB£ 10/19/06 Quiz # 1 Show all your work clearly! If you finish early, don’t forget to check your work. 1. Find the plane through (2,1,3), (4,4,5), and (1,6,0). (12 pts) “MM __9 P a P- Nm—E: Pa -_= <2.,3,2> , P72; <—\,s,-3> __;’w __> '3 ’1 ‘ L 7. Z 3 1761 >< PR : ‘ -l s ': “(LC—9140) —£(—Q+Q+£ 0MB) '7‘ ( I I - , £""”‘*P""°’ — <-\a,4/1%> ~ 662 OF PLANE: Mx—x.) + 1903-12,.)4r ace—11..) = O ‘ -Ia (X-L) 4-403-04141—3): O ‘(4X+Q‘Q_+‘\$%:g 2. Evaluate the line integral IC 13/ ds, where C is the line segment joining (—1, 1) to (2,3). (12pm) More a ' \ a '9 o 4 c - rL-b3-C'Ur,+tn, -t-\ =Cl-t)<—\,i>++:<z,=s> = <-\ Wat, \'\’?_":> M M XL-H ‘6,Lt) +14 H .V ~ ﬂ, £3Ll 9 L 3 2',"~‘s-3 "4-3 g ‘3; ‘ " A c1 HERE Ext: 3/ 33:4 .‘ S xa’ég —_ g xm'gkﬂ (jifﬁaf a“: c, ‘ ‘— ____‘ 1: Q L—\ +3E)L\+LE)\131+7} 1 = Jab-Ht *ch gr. . 13 : ((7:14; +lz'kL-‘r 1431:5131" Pin] = “'2': 3. (22 pts) Given ?(x, y, z) = (ey, xey, (z + 1)ez), where sz:t2,y=t2,z=t3,0_<_t51. (i) Show that f is a conservative vector ﬁeld. (6 pts) (ii) Find a function fsuch that F’ = Vf. (10 pts) (iii) Now use part (ii) to eveluate [C 1? 1d? along the given curve C. (6 pts) u) —’ _‘ ,t 2 E CURLF - 1 l 93% ax 8*} , H ‘1 "’ : LL 403-“ ~03 Jen/ﬂu 0 L4,. F \s @HCEQ-Vﬁc'nVE "Cy : ‘0" £13: X99) IR}: Mr wax x ewes: R3453) -.- x244. 3(33\ 4 - -— '2 93 = Xe + game) 13.; -0 —> 05 LL09 Rxmx 1:3 = xe + Ma ' a t 5g} = k’gyzﬂgaa-ne Ag = Mac» = 9:2, UL L42. Qixwgru —. e + g5 +)& r \ \ , @013 'QUAM -§(o,o,o3 =09, «- l-e, +/)()—(o+o+/%\ QMUe/‘ : f 0 Y0“ '3 <°)\7)°> _ A 4 ’ ‘r(\)=<\,\,\> / 4. A particle starts at the point (—2,0), moves along the x—axis to (2,0), and then along the semicircle y = J4 — x2 to the starting point. Use Green’s Theorem to find the work done on this particle by the force ﬁeld ﬁx, y) = (x, x3 + 3xy1). (14 pts) ‘4- 2. a Kkﬂfzq of 3:4 WEE” z 2» 223* =>V=l M, ax ~3X *g‘g / 33*0 «/ USE Vodka :: [(gxl‘Fgg) * cookomares Extra Credit (5 pts) 2 Find the area enclosed by the ellipse 3% + y— = 1 MERE 0 9%: 5 ur a b2 ' “33?: PM“ 985 For. ELUPSE 1 X = OKCDS’C , t3: loscn‘t J dX : ~0k5€wkd4cIAa -.-: bans-t CH a: . . A : ax Avg -— lack x : ﬁggatacosﬂcb Cos-k) — Lbscwtxsmscwﬁél— \a 21‘: t 0": Sow“: twat) At ...
View Full Document

## This note was uploaded on 05/05/2008 for the course MATH 318 taught by Professor Wang during the Fall '06 term at Cal Poly Pomona.

### Page1 / 3

MAT318-QUIZ1 - MAT 318 Instructor: Mike Wang NAME: AN\$WB£...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online