This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ECS 120: Theory of Computation Homework 7 Due Nov 21, at the beginning of the lecture or by 1pm in Kemper 2131 Problem 1. Sipser, Exercise 3.7. The description is not a legitimate Turing machine because the reject condition in step 3 has to wait for potentially all settings of integers to the k variables to happen and be evaluated. This is of course not a legitimate condition because there are infinitely many such settings (ie the number of conditions is not bounded by a constant), so the TMs finite control cannot be designed. Problem 2. Sipser, Problem 3.16, b) and c). 3.16, b) Solution 1 Let M 1 and M 2 be TMs recognizing L 1 and L 2 , respectively. Construct M that recognizes L = L 1 L 2 as follows. On input x , M tries in sequence each of the finitely many bipartitions of x , x = x 1 x 2 (how many are there?). For each partition, M checks if x 1 is accepted by M 1 and if x 2 is accepted by M 2 , by alternating between the computations of M 1 and M 2 , step by step. If both machines accept, M accepts x . If no good partitioning is found among all possible partitionings, M rejects. Solution 2 One can use a Nondeterministic Turing machine M which given a word x guesses the correct partitioning of x into two parts, and then just verifies that...
View
Full
Document
This note was uploaded on 05/06/2008 for the course ECS 120 taught by Professor Filkov during the Fall '07 term at UC Davis.
 Fall '07
 Filkov

Click to edit the document details