hw2_soln

hw2_soln - MAE 101A Winter 2008 Homework 2 Due Thursday Jan...

Info iconThis preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 12
Background image of page 13
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAE 101A, Winter 2008 Homework 2 Due Thursday, Jan. 24, in class Guidelines: Please turn in a neat homework that gives all the formulae that you have used as well as details that are required for the grader to understand your solution. Required plots should be generated using computer software such as Matlab or Excel. 1. Assume that the temperature decreases linearly with altitude at a rate of 6.5K/km. A balloon filled with a gas of density 1.15kg/m3 is released at sea level where standard atmospheric conditions apply. It rises to an equilibrium position where it’s density is equal to that of the surrounding air. Assume that the density of the gas inside the balloon is constant during its rise. What is the height to which the balloon will rise? 2. Water flows upward in a pipe slanted at 30". The mercury manometer reads it = 15 cm. What is the pressure difference p1 — 332 in the pipe? The pressure difference p1 - p2 is partly due to frictional losses and partly due to gravity effects on the water on the pipe. What is the pressure drop due to friction? See figure. 3. The gate ABC has a fixed hinge line at B around which it can rotate, and is 2m wide into the paper. The gate will open at A if the water depth is high enough. Compute the depth h, for which the gate will begin to open. Assume that the gate is massless. See figure. Hint: Draw a free body diagram of the gate. 4. Problem 2.76 Problems not to be turned in. White: 2.49, 2.68 Flow of water Schematic for Problem 2 Schematic for Problem 3 “ \ ‘ 'v ' " ,- 4 : A‘SS uni WFwW’e exec-rinses Lanny ‘f w * H‘ 6141‘ (7Q "‘ D“ [C 6:5- “ bailgofl Wavk 3:25 u kins % J - . . . _ f “.- L " II S k I? 2‘ C- Leas“? (A 1' in; level WLe/‘f’ ) hhc’; I“; ant-hwy; Cg -\ [—Yvnj Dali/Mn‘r‘a: m e?“')‘IIL’/'VM LQ'SLI" l’n wknzk H1 Bani“ 'f‘3’5v 4"Svm Wt ézey‘e'; 6’4 (5?“ r» HE éaHoc’m [E’s/noeth ('uns‘l‘an" AV’WE) :l'l HQ 50 lu’Lf‘p-fl: (9 a: fiw’b 14> T: To 4’W‘C3'Zo) m = *5.5i</’ucm 0ka 12:0 T: To P=F 3:;0 FfO/H A.6 a} a: O m T: 986,; K 5; :2 1.3353 K{was F‘Q’Jm A; q (Dy AC!) R = 385C: -- :92 3 £1,1— ..u- _‘ _ g6 ‘1’ avg} 5’ ( re Eva: VIEW: 0F 3 :2 6m: - J 59(75273 * ’ 5; ,g«— #d. fly“ W'E‘Tfiwz)- “3 52 ii“ .5— +3/') --> gig-2' £53333 (9% _ p '1" (m R 9 1(2) . (9% j a? ‘ Oh ( )’ "(m wig); — wa-hJ S 3 -(nf‘fi/g) .Tta) In f i 1‘?“ 5’ In : " (m rain) In [To I-M(E’?u)] 1' egpowenQ-fak: .U r 9%) 59 = C [To rm(2‘%o)] ' a s i‘j/L.’ T:?58.2k] rec; H 3: go cy’r 2—: 26, [ CA San Level 1L“? g“ Iv” Tr: Ta :1 . ‘ '(HWTR) _ . 90 = C Ta A C -— 9o loofah/n51) '- .45; $5 i=1?! -‘.=;.- .7; .-: MAE—lflfl__ .... MLHW 1‘2 gohmls. J, 12, Ea:th PTO Given 3 DUN Flaws u umber} fin a . a. «J- 30" , 71‘0— WAC-I" ? K“? / Manon—mp “$3.694 L3- IZ cm . WM'l‘ I3 He, Pfiessgflé 3f‘wwé bu 'b} 'V‘ “1 “ll-e {Kass-are CQFFWmcc a3 “a 9.397 cm i» T—rrz'wbnal leuics. mg- «3 5111: IN: f“, -: 1.000 I"fl/#5 g: mgr... : 3 55396;:I'J55m '- "H. [arcsswe gig-.9? Inf-Pi - TILL pad-i” a? 9-4. Puss-rm camp. glut. Lo Pub-2‘10” solui‘TD-n: prz : ? Probbm ‘4." New: mule. a. H Dan-M‘. a) m Ly-cg-ros‘khz Pom-e 09m water mm Fwd .5, {‘3va a? Eva‘s-4m c) 11: wm+ ec m Pow “Lows 39.“; B. flf‘ (9.125..." do m. Rm.“ D¢HM.H a) PA, .‘E L: 120‘...“ a) L 1? m a Bank .- 1314 : C(7CIC’ “Au-.3 3m - 133100 U/m3 l’al‘n: lot: 356} be" as) LV‘: Lva 5'“ L: O\ Po: bug,“ Pugh lois‘zsa Po. + were “440(0933 43.15) : ioq’zaofia pa" pp in“: workms (FLU-‘5' '3 air 1’5 : PC 1* 9’»: A2 = lemma +(13‘3ilov me) (03'?- “0"8) :: (35900?“ Pa = P5 PL :. Pg-E’MA; ; 15505:: - namoqmz—ms) “WM Pg” “ gs : L126”, w? L‘: “26/9550 : 1.375.“ 1’.- “van: 2 68 Lain ’1 Di: ’U'm‘m ROI i‘knl‘fi‘ 5:", :Lr“.‘um :7 DUE-IV?!) ‘ L; 50"“ ._ A C. I ‘l ; Farce : 1/2 :— Cfllfo r' 9 13 (3* F 2'63ch 3A ‘I‘CFs rial P: Ln." pawn I: 9.5””, \/3L #0:”)..— pofi A 1 i—% ' 3 dict J'r-rcg 3rd: 017%“ “(’3’ ‘A‘Imvléflm :1‘3055,“2 7k¢eA = 0.553 ‘ “how h 3657 c L305; .— .- 3&894 N («JV 0 F 15/: {are \/L?.._. HIxx 5mg Inn: {A . 3 . .F___________________ ,. ‘ 3.65? .L3055 PPR-0m», +1500 «(7.5561 ._ 388W e («.370 r (9.016: I) __-___;a,__________ lo #5 a; " P: 125ch N I flow n " 0 ...
View Full Document

{[ snackBarMessage ]}

Page1 / 13

hw2_soln - MAE 101A Winter 2008 Homework 2 Due Thursday Jan...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online