This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ﬁﬁ» 56 Math 3041.2 @ Test 2 April 14, 2008 M— Do any ﬁve of the following six problems. Show all work. Credit will be given only on the
basis of work shown. pl. Find the solution of the initialvalue problem y” — 6 y’ + 5 y = 0; y(0) = —l, y’(0) = 0. . r , X
rzGr“ “'3 ULCIQ\YLC7€ 'Ic C,*C1
{‘504 :3  r
< > 3  Jr;5'(’,c"‘t (me O: ;CI*C‘L
FT (>I
C7 '§('
"l :C‘§C,
‘ VX g 1 " r
.7 e v ~ ‘ft.
3» w
(.— l c , '5
‘1 7 “t 2 Given that that the functions yl = x, y2 = x are solutions of the homogeneous equation xzy” —2xy’+2y = 0, x > 0 ,
(a) show that yl and y2 generate all possible solutions, (b) use them to ﬁnd a particular solution of x2y" — 2xy’ + 2y = x2 , x > 0. \ 7:17.430 WX$ Math 3041.2, Spring 2008 Test 2 W3. Math 3041. 2, Spring 2008 A 32 lb weight is attached to a spring having a spring constant of 16 lb/ﬁ. The
weight is set in motion by stretching it 3 in downward beyond its equilibrium
position and releasing it. Determine the position x(t) of the mass at time t if there is no damping, and an external force F (t) = Zeost lb acts on the system. \/\/:Wé L: “a 160),: 71/~ 170): O
"1" ‘ M : ‘ C LO
3? ~——~
7c" ‘ lb‘x _ Rat/M» Uh (remtré * (1 daw‘d—
(2—! {bag 1:!" Adair! “'5 (1663,“‘4 1 , N A
r’ r“ ‘ I/f
  :1" A + .h— L 72.5 r if r ‘5‘
' J" ' CA3 . b] ,
(i ‘1) e.’
‘, t‘ ,
 40.20% + [6/1604 ' Jcoa+ ‘, Ja ‘LI (,4me [MIMI(f .
“q ’6‘)" 9 0 = HQ
ISA: l C, no
A — ‘ If, ..—————————w——v~—«—._._____._~__..——.._m.....
’5 j (J; ,1. . 'Z . ,' 35) 60 Ooﬂ‘H FM; / henries, and 12 volts applied voltage. Assuming initial conditions Q(O) = 20 coulombs, [(0) =15 amperes, ﬁnd Q(t) and [(0. @CD): 10
., . ‘a ' ,
LN? ~ 4'00 [000 2,? /—.‘H a) )H
G“ Wu” AW 3 Eli}: c;e’“& are“ 3
"5'
I' + I ’ ’ I . ' '.. r
for 7} in) c‘h: _$('E lez‘e.5 ‘gCL'ie—J’
Qk SECf‘ElBr‘T‘.
1
("lg DR ’2’0 — CI '1 ') 20v;— ._ C!
4+ 43/ I S
Q,“ J cute W7
A l 7 (I
Q ‘— A" , ‘\ P‘
'P (j ' ‘2 v" IS (;('I ((I,
0) N A n “it t
/ , a; ,5
01?“ 5; w w /§:'s(¥f§7)+cz 3’ 1447K . ~ /§‘ l l . Z ,
1? 5 3x— ' "53’ Test 2 a? 5. Given 2x + y, y(0) = 0, apply Picard’s method to ﬁnd y4(x) and yn(x) . What is lim y,,(x)? mam 30(1):Q. Wadf 2+ an #1,. z 1
X
J h in O
(3 l 1 1* 1 ‘ 3
311 — 02H? ow“; 3+J . ix
0 D
(H\ “A 2 f '1 f 2‘ _f+.§l i {V
‘3‘ 0‘" 9*“ ‘§{ eh "1 "5 473 w V”
A ‘ f a. g 1 f_ "'
f I 1! Mi“ 2.. LL.“ h—vl ,x*z‘”1
HOLE a“ " '3’“ #34 cu 7‘ ’5 H» “I 5'91. 0 1 "’3
\L 3— ‘<.L "2 ‘1'! i_ 7‘7 ‘ 3H ‘7: l 5: 3 "17?) h: EVA“  1+4
’ )0 (314.4" I
LilI L “(I 2 , 7 3 3 21%, Li
CD
I 1 n _ n a .
K) 6. Fmd the power serles solutlon y— Zoanx for the 1n1t1al value problem
M: can
dy go: F3 7‘ {r C. _ LA"
——y=x, y(0)’30. j; that“ J ; mum
dx 14:3 rhl
ARV—1 new a
a
Z “on 1W! "‘3 6.1“ E. x “if pvO I
m w I
2 HQ» Lu;  2 av»: 1” l “ I H ' V2”; r
an
M I a Z a
ZCMMQHM :1 win“ ,° 0 7‘
In] J: q' 3‘9 T
7 F I 0 _ f 1
C < L l : I1  7 1
qt dab ‘ (afpaﬁ .2: *4) (:10 Ian—.l/I ﬂ ; i
W3
4*‘0'0 .Qag—ci,:( P123 43* ('71 f'_ﬁ t1
ChiO « Q\_l T__ O 3 3.2
2: 526?; ,r ' “:1: QH_ 0% 1 f 2.,
WI a,“ awnL ‘r an
#1 ' In ""3 “W‘ 2_ “L ,
.——— g (93? j..\
I I? E 3, K I
Math 3041.2. Spring 2008 Test; i ' ‘2‘? 3(1):” 3.7.1 {4 L 2‘" LO ’ '{zl‘tn MM» “(2): 63 v’ [x ( ...
View
Full Document
 Spring '08
 Schiller
 Differential Equations, Equations, Trigraph, LG, 0%, WI, Adair, henries

Click to edit the document details