This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: CHAPTER 3 KINEMATICS IN TWO DIMENSIONS CONCEPTUAL QUESTIONS ____________________________________________________________________________________________ 1. REASONING AND SOLUTION In addition to the x and y axes, the z axis would be required to completely describe motion in three dimensions. Motion along the z axis can be described in terms of the kinematic variables z , a z , v z , v z , and t . In analogy with the equations of kinematics for the x and y components, the following equations would be necessary to describe motion along the z axis: v v a z z = + t z z v t a t z z = + 1 2 2 z v v z z = + 1 2 ( t ) z z v v a z z 2 2 = + 2 ____________________________________________________________________________________________ 2. SSM REASONING AND SOLUTION An object thrown upward at an angle θ will follow the trajectory shown below. Its acceleration is that due to gravity, and, therefore, always points downward. The acceleration is denoted by a y in the figure. In general, the velocity of the object has two components, v x and v y . Since a x = 0, v x always equals its initial value. The magnitude of the y component of the velocity, v y , decreases as the object rises, drops to zero at the highest point, and then increases as the object falls downward. a. Since v y = 0 when the object is at its highest point, the velocity of the object points only in the x direction. As suggested in the figure below, the acceleration will be perpendicular to the velocity when the object is at its highest point and v y = 0. θ θ – v 0y v 0x v f a y a y v 0y a y v 0x v 0x b. In order for the velocity and acceleration to be parallel, the x component of the velocity would have to drop to zero. However, v x always remains equal to its initial value; therefore, the velocity and the acceleration can never be parallel. ____________________________________________________________________________________________ 96 KINEMATICS IN TWO DIMENSIONS 3. REASONING AND SOLUTION As long as air resistance is negligible, the acceleration of a projectile is constant and equal to the acceleration due to gravity. The acceleration of the projectile, therefore, is the same at every point in its trajectory, and can never be zero. ____________________________________________________________________________________________ 4. REASONING AND SOLUTION If a baseball were pitched on the moon, it would still fall downwards as it travels toward the batter. However the acceleration due to gravity on the moon is roughly 6 times less than that on earth. Thus, in the time it takes to reach the batter, the ball will not fall as far vertically on the moon as it does on earth. Therefore, the pitcher's mound on the moon would be at a lower height than it is on earth....
View
Full
Document
This note was uploaded on 05/09/2008 for the course PHYS 23 taught by Professor Holland during the Spring '08 term at Pacific.
 Spring '08
 holland

Click to edit the document details