exam2 - Exam 2 EE 223—04 , jgh 5/14/06 Name 30 )cmwx'ms...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Exam 2 EE 223—04 , jgh 5/14/06 Name 30 )cmwx'ms closed book with no calculator; one sheet of tables provided (50 min.) I have neither given nor received unpermitted assistance during this test. (signature) 1. The transfer function for a LTI system is given by H(s) = (s + 1) / (s2 + 53 + 6). Showing all steps in your solution, determine: i (4)a) pole/zero plot _ _ gm 0“) 3 L; - \ 8—H (8 +1) ts + 3) \Ats) : 3 “ ‘ ‘ P 7‘ ‘2) n 3 (10)b) impulse response of the system, h(t) ham} 4—) VH3} ‘4‘ + ‘47.. $+l 5+3 Algebra (9 -'l 2:; +3 ., ‘ ._, \ 1 M 2 ‘4‘ ‘ LS'X'ZJHQSWv-z s+&\‘.s=—2 HLS\ : 5 l i z 2 i 5 g , l i 14L: (snowy,th -; 5—H s,l : 2 $34. ‘35:»3 L— H A», (2) 3+2, “*5 ll\ : -7, 3-6 , i with, ~ 3-6 fut-+5 4. 2e’ W“) L ‘ I” i i l i l i (12)c) step response of the system, s(t) war-3 : 1,, La 4—.) A a keg) \(m “a mums : Jig-w a: 2.4.9 + \<\ + ‘42 SL$+ 23mm 5 8+7. 5*3 \éo—a 5 Hails, : 2 ,_L 'o $k+w55+g Q, I 5:0 Olgy'vim Q rs ‘4‘ : {an W5) is” l 3 5+» l i 13.2-2 + 1 x4L:(srar3)Hz5)lj~ 3: 3‘ \ ; -3 " SC$+13 S~-3 ; . LVQ L 3-3 <_. 7—13\ \E - __ 7— a ‘f‘ (53’ S 3&1 A" fi—y's f _, x -3-4— *c ‘Stfi - Em?) 3,, ALe_L+ M“); alga aw, i; ’C ‘t 73 34” ~ «31' 9.9 we : 3 ht’wc‘Y : LEE—6 um +26. “Mk” 3? at __ fix; ‘1’? It J‘s/(aw ‘_ e - I? \t‘ ’— n; 8" \o “ 50 <~ Q )0"? + O 2 l 1 a 3 . ii (4)d) differential equation that relates the input x(t) to the output y(t) - 5“ Yrs) - 2 - WS — -——-—-—-—- “A .—— : S 4-5‘ Yrs) - (5%))(15) i s 2 +§5 +c MS) 3 ( 5 w) ‘ ,3"(<—) 4- Saves) +4, 2 kw”; ‘Hd'H (4)e) frequency response of the system, H(a)), i.e., the Fourier transform of the impulse response J (ad—H \ e)- on Maw-50mm ‘ é-w’M—JS‘Q ‘ 9953‘ 2 H1W\ '3 5=JLo ‘ (4)f) if the system is BIBO stable with justification \—\£53 \3 9% WW W Pg log 6. Lute :3 V5ng (4)g) if the system is causal with justification M09; 2: o ,éoir + «0" => causal (12)2. State the definition of the Fourier transform, and then use the properties of the Fourier transform provided in the tables to determine the Fourier transform X((o) of the signal x(t) shown. You must show all steps in your solution. I 5L Lt) - but cl (1'1 xug) 2 goo—Xi-H € 4: ’4’ i 43 y \rec'rUcB 4—) SWCUEFB' ‘ x 2 3 ‘t 4 SW9 Gilt: p to i Q. {is chLm(t\\= fiSw‘cirtl 3L.) 4' rear (A w» 4 m3: (41+) <—> 1 a k 4V‘ec’r(";(‘l7‘ll)4‘5 '6‘ 95mm 2. Au 8%LL9r—r-l men ': ‘3 Q ‘- Jvfi‘z M+-Z @sl (10)3. State the definition of the Laplace transform, and then use the definition to determine the Laplace transform of the signal x(t) = 46“ u(t); don’t forget that you must specify the region of convergence (ROC). 03 x13) : f 1(ny 9" SJ: gt (UhQ-«SK‘MCU O- ‘1’ - -st ‘13 —(s+st x5): f 46 game at“: = f 4-2 .) At 0. 0- c __ s+s")t 0“ t 4. Q. NVHK $2 quid” (3 +5) 0. Jun-PS flat :1.— :M‘ifie(}te ]‘(s«-s) Same {9‘55 : 4 4dr G¥S>O Sk-S' fl; Sat—5‘ Boa 7, (12)4. Sketch the Bode plot on the graphs provided of the transfer function H(s) = (s+1) / (s+10); you must show all steps in obtaining your solution, and provide each axis with a scale, units and 32:3 ‘ label. I \ H 04“ J6 V 7' ' . ( (dog: \\ _ \ aw 4'0 K / H (w : sass -=- x0 / pl 5:»; Jaw u x/ / - .1... \ +» a 6%) , x )Q g, _,A w , “ A'Jt/m) 0‘0' I0 \JOO moo‘dfmiisi ¢QQ¢M§ A20 ’w- k I—- 4— >‘\: ,— W‘“ X z 20 in H» w “in "15x ‘ \QB Cato i 4 3‘ (ud:\o> , a L “ginkgo To to 2 ‘12 l—"Zohcyo LH-Ud) (“at”) 4— 10 new ( mtg/ow l 5. A relaxed LTI system is described by the follovflnidifferential equation which relates the output y(t) to the input x(t): ‘6 “’3 COW‘QCi‘e W“ “(L W Y”(t) + 3Y’(t) + 2 = 2 KW + X(t) +3 I ma -- - —%E}r Showmg all work, determine: (10)a) impulse response of the system, h(t) {We +33%; +2‘dé4d : we; 4-th) with 3"”): ‘5”) ‘0 (“Emil :3 (51 +3s+zjvm = (254435445) Yd) ' 2 +4 iZS‘l’l ~ Zr 14,; “‘5‘: w) ' :5 = '+»\( ' “3:” 2:» 3 +35 +2, [3 ).S+z\, 5.. 2 - ZS+\ - LN) +4 _-\ ‘ \4 - - M2 ~ —-—-. : - l \ 5*; iS=-\ tax) “*1 ' t 254'! .4, .. ‘ “53‘5" S=~2 L—u H t 226 ‘- m5) : :43. A, ‘3‘ <~> - a‘iuwt JP .36." Mr} :; \nlfl ‘ ‘ SM 3472 (4)b) frequency response function, H((o) ‘ mum HtW}: H“(S)\S:360 w Gwyn!» 3C;w\_i,2 \ Jr 4 2w HIW‘X : z-wl-\- J 500 (10)6.Arelaxed LTI system with the transfer function H(s)-—=s/ (s+7t) has the input signal. .. v . x(t) = 2 cos(1rt) u(t). Determine the steady-state output signal y(t)ss. Show all steps in your solution. J u M V Lam mun : Htswsgm - M “V M . fl» R'l'} ~\~\ siuo‘j—si‘oie 1663 WE <~> 2 l1“ Si “H7” 4’ “gag-m] x? ‘ 3“) Wm) wad) _ ‘uw‘l \l 3: 4m) WW3 - 2- “ {U-J \ 3 J94 *5“ Se +v SU/J'VQ Jéfl um) E ‘9 F, )g ‘ Slwm " Stu—“'5 ‘1 I“ “*3 w L”) m 3 “mm 5 It. ' 1-. Home» ‘ fil752$m »*fir€wm'fl l .h my F—g‘ ». J; 655% “idol-Wt) Mae." 4 n SZUJ-Tll t“ w -- rs: mm + ‘98 ss * 4r . V, W ‘ youth 2lH(W)\(o>(w4-+2;_H<rl) — W r us :1 *Ca( -s+a’v€ LI _ p 5 n cud. :fircv T‘ ado/1 A. “9+ Km win v:- figmss “(Q)iu:“ : -g“+“ ._ MWTVEdW/4: W 6 Y5) 2 items} is; ...
View Full Document

This note was uploaded on 03/05/2008 for the course EE 228 taught by Professor Harris during the Spring '08 term at Cal Poly.

Page1 / 4

exam2 - Exam 2 EE 223—04 , jgh 5/14/06 Name 30 )cmwx'ms...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online