Cheat Sheet #2

Cheat Sheet #2 - W_ex = -P_ex * V (1 J = Pa m 3) [when Pex...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
W_ex = -P_ex * ΔV (1 J = Pa m 3) [when Pex is constant] q = m*C_sΔT q_sys = -q_surr C = q/ΔT => CΔT = q (heat capacity) ΔH = ΔU + PΔV ΔS = q_rev / T (q is usually in J, T is constant & in K) Δ_Ssurr = - ΔH/T (at constant pressure and temperature) ΔHr° = ΣnΔHf°(products) - ΣnΔHf°(reactants) ΔHr° = ΣnΔHf°(reactants) - ΣnΔHf°(products) *If using bond enthalpies* ΔSr° = ΣnSm° (product) - ΣnSm° (reactants) (elemental forms not equal 0) ΔS_vap = ΔH_vap/T_b (T_b is the boiling point) ΔGr = ΣnGm° (product) - ΣnGm° (reactants) ΔG = ΔH – TΔS (at constant temperature, ΔG in J or kJ) ------------------------- T↑ => P_vap↑ cuz more molecules have energy to break IMF bonds. IMF↑ => P vap ↓ => T bp ↑ => ΔH vap ↑ => Viscosity↑ London forces ↑ with molecular weight! (If so big, can beat H-bonding) Endo => T↑ => K↑ => Products↑
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online