**Unformatted text preview: **as our eigenvector v = ± 1-2 i 1 ² = ± 1 1 ² + i ±-2 ² . Since complex eigenvalue-eigenvectors come in conjugate pairs, we have the eigenvalues-3 ± 2 i with corresponding eigenvectors ± 1 1 ² ± i ±-2 ² We now have enough information to write down the general solution to the diﬀerential equation: x ( t ) = c 1 e-3 t ³ ± 1 1 ² cos 2 t-±-2 ² sin 2 t ! + c 2 e-3 t ´ ± 1 1 ² sin 2 t + ±-2 ² cos 2 t µ 1...

View
Full Document

- Spring '07
- lee
- general solution, complex conjugate eigenvalues