# GW3a -

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mock Gateway III (Graphs) 1. f (x) = 60x3 - 30x 60x3 - 30x = 0 30x(2x2 - 1) = 0 1 x = 0, 2 1 1 Critical points: -1, - 2 , 0, 2 , 2 f (-1) = 31 1 109 f (- ) = = 27.25 4 2 f (0) = 31 1 109 f( ) = 4 2 f (2) = 211 Absolute Max: 211 Absolute Min: 109 4 2. f (x) = 2x - 3x-2 2x - 3x-2 = 0 3 2x = 2 x 3 x3 = 2 3 3 x= 2 Critical point: 3 3 2 f (x) = 2 + 6x-3 f 3 3 2 =2+6 >0 3 3 2 We have a local minimum at 3 3 . 2 Note: If a function doesn't have a local maximum or minimum, a good answer to the question of "why" is either: (a) The function is always increasing. (b) The function is always decreasing. 3. (a) 1 (b) (-, -1) (1, ) (c) (-1, 1) (d) 1 4. 4y 3 2 .... ........ .. ...... ... .... ... ... .... ... .... .... ... ... ..... ...... ... ........ ... ......... . . ............... .............. .. .. . . ... .. .. .. . . .. .. .. .. ................ ............... . . ........ ........ .. .. ..... ..... ... .... .... ... . ... ... ... ... .. .. ... .. ......... .......... .. . ... . ..... .. .. 1 -5 -4 -3 -2 -1 -1 -2 -3 -4 1 2 3 4 x 5 5. . . . .... . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............... . . .................. . .. . ... . .. ... . .. ... . . ... .. .. . . .. . .. .. .. . .. .. . .. . .. . .. . . .. . .. . . .. . . .. . .. . .. . . .. . . . . .. . . .. . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................ .. ................. . . . . . ..... . . . . .... . . .. . . .. . . ... . .. . . . .. ... . . . . . . . . . . . . . . . . .. ..... . . . .. ... .. . . . . . . . . . . .. .. . .. .. . . . . .. . .. . . . . .. .. . . . .. . . . . . . . .. .. . . .. . .. .. .. . . . . . . . .. . ... . . ... .. . . . . . . . . .. . . ... . ... ..... . . . . . . . . . . . . ... . . ... . .... . ...... . . . . . .............. . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y 3 2 1 -3 -2 -1 1 2 3 .. .. . x .. -1P -2 -3 Note: The derivative of a parabola is a line, not the other way around. So for this problem, the parabola will always be your f and the line your f . Point P Q 6. R S T y + 0 0 + y 0 + + ...
View Full Document

## This note was uploaded on 05/15/2008 for the course MATH 231 taught by Professor Mooney during the Spring '08 term at Wisconsin Milwaukee.

Ask a homework question - tutors are online