# 14th - 1 1.3 THE IN'l‘I‘ILRAI TEST 1 converges a...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 1.3 THE IN'l‘I‘ILRAI. TEST 1. converges; a geometric series with r = 11—0 < l x. 7:: ' . . 2 _ o 1 - - , - _ 3 o. converges, E 1 WE _ —_ “E l n” 3 , which Is a convergent p—series (p — E) \- .n u = x — 1 - 11—1 16. diverges by the Integia] Test: 11 W; |: d“: J —. j: ‘13—” = ln (x/ﬁ— 1) — ln 2 \u —- 003511—- 00 . . . 1 . tanfl] . 596“) 24. diverges by the nth—Tei'in Test fordivergence; liin _ ntan (—j = liin _ I D = lim _ ~ ii—ioe rl 11—':')<_- F] ii—ioc- _;U _ - 2 1_ _ 2 _ - —]1]_]!an sec (DJ—sec 0—1;0 l 1.4 C.( )1“ PA RIS( )N TESTS 5. diverges since 11 311221 : i 0 l2. converges by the Limit Comparison Test (part 2) when compared with , a convergent p—series: ri-J [1n niir 'l | . L .- 1 3(1 1' - _ 2 _ 2H 1 E _ li]n_ ["T J : lim_ “Uni : lim_ LE=3 ilm_ (inn) :3 l]!'.ll_ la=15 llﬂ'l_1n'—n 11—‘o<_- n—ux- n n—‘oe 1 n—ioe n li—‘DL- 1 li—‘DL- n = 6 - 0 = 0 I) 19. converges by the Direct Comparison Test with , the nth term of a convergent p—series: n“ — l b 11 for 22 .3 32-3'31-1-" ' '1 11232 2:» n [n —1]>n 2:» n\,n —1>n’ 2:» > 73—101useLimitComparisonTestWithFL 0" ' in n— — 25. diverges by the Limit Comparison Test (part 1) with the nth term of the divergent harmonic series: ' | . \$10 — . ' 1]]‘11_—“—( . )2 lim M21 um (31 Ho x i i 6 ( 6 - , - 36. 1 ’2: r 3.3} } n3 _ mum”) _ “in } “(2M H n3 _.» the series converges by the Direct _5_ Comparison Test 11.5 THE RATIO AND ROOT TESTS . . . . . r 1 i u . 3. diverges by the Ratio Test: liin 3"“ = lim n : liin ‘“ i“) - 3—, : liin “' 1 = 00 h 11 —‘ no 2.: n —‘ oc- 11 —‘ oc- e n. n —‘ oc- e ﬂ—‘ D -1 10. diverges; 11]_iin an : lim (1— = lim I. (1— ( 113]) : e‘hl‘u‘ a: 0.72 ;’ 0 , - . - a.“ _ - tni 112mm i 2:! Fri! 20. converges by the Ratio Test. 1111mm a" _ nli‘mxl - _ - iii 1 2 i112 _ g _]1]_]in3<_-.( ri (mill—3 <1 as '— 3" {5/3 i I . _ . an“ _ . _ . _ _ 32. converges by the Ratio Test. “11in” a" _ 011mm an _ nll‘mxl n — 3 «ti 1 1-3.--t2n— n _ 1-2-3-4---t2n— non) _ (2n!!! 44. converges bytlle Ratio Test: an 2 EHIHBMUH } 1} _ E2_4m2n]._,(3n } 1} _ (znnnjtgu r l} - [211 t 2)! _ g2"n!‘:1§3“ t 1‘.I_ - (En! llt2n t 2);? t 1‘: 2:, n [Zn—1m} 1:]!I'1(_'J.n+l } 1;, [211)! _ n 22in} Dian“ l l} (1 r 3'“) _- 4n'3tsni2 _ _1__ _11]linx.(4n'—t3nl4)(3r3'“}_l 3— <1 .nlg 111v AL'l‘I‘IRNA'l‘ING SERIES, ABSOLUTE AND CONDITIONAL CONVERGENCE TI: TI: ” converges absolutely 2% converges by the Absolute Convergence Test since Z |an| : Z: which is a 11—] n—l convergent p-series 6. converges by the Alternating Series Test since ﬁx) 2 “17" 2:» f’(x) = 111,“ < 0 when x b e 2:» ﬁx) is l decreasing 2:» nn 3-“- nm];also url 2“ Oforn 2“ l and lim uJ1 = lim m—“ = lim = 0 n—‘oc- n—‘oc- 1'1 11—inc- V. k l l. converges absolutely since 2 Ianl = Z n a convergent geometric series n:l 11:1 . x _ ,3 b 25. converges absolutely by the Integral Test since 11 [tan—1 x] dx = lim [0“: x" ] 1 b_.3<_-. [( J we] I) tG|—' tal‘a = lim [nan-1b]2 — [tan—l If] 2 b—‘oc- 46. |error| < (—1)“(%] 20.00001 ...
View Full Document

## This note was uploaded on 05/19/2008 for the course MS 4032 taught by Professor Anony during the Spring '08 term at A.T. Still University.

### Page1 / 2

14th - 1 1.3 THE IN'l‘I‘ILRAI TEST 1 converges a...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online