EE110_W08_HW 2 Solution

EE110_W08_HW 2 Solution - Q1. 1-stage: V1 1 0 DC 20 R1 1 2...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Q1. 1-stage: V1 1 0 DC 20 R1 1 2 10Ohm R2 2 0 10Ohm .OP .PRINT DC I(V1) VOLTAGE SOURCE CURRENTS NAME CURRENT V1 -1.000E+00 Thus, Req = 20/1.0 = 20 Ohm 3-stages: V1 1 0 DC 20 *stage 1 R1 1 2 10Ohm R2 2 0 10Ohm *stage 2 R3 2 3 10Ohm R4 3 0 10Ohm *stage 3 R5 3 4 10Ohm R6 4 0 10Ohm VOLTAGE SOURCE CURRENTS NAME CURRENT V1 -1.231E+00 Thus, Req = 20/1.231 = 16.25 Ohm Repeat similarly for 5-stage and 7-stages. We then obtain the plot: 0 .5 1 1 .5 2 2 .5 1 2 3 4 5 6 7 8 N o . o f S ta g e s Req/R Yes, Req/R converges to 1.618, which is (sqrt(5)+1)/2, the value obtained in HW1. Q2. Parallel RLC circuit: (a) For an underdamped response, we require < , so that 15 18 1 1 1 1 10 or ; 2 2 2 2 10 L R R RC C LC < > > . Thus, R > 11.18 . (b) For critical damping, 1 11.18 2 L R C = = (c) For overdamped, R < 11.18 . Q3. 100 200 40 30 mA, C 1mF, (0) 0.25V = = = t t c i e e v (a) (b) (c) 100 200 100 200 100 200 1 ( ) 0.25 (40 30 ) 0.25 C ( ) 0.4( 1) 0.15( 1) 0.25 ( ) 0.4 0.15 V t t t t c o o t t t t v t i dt e e dt v t e e v t e e = = = + = + 2 2 2 2 1 2 3 2 2 100 200 R 100 , 200 300 2 , 150 1 1 500 150 ,R 3.333 Also, 2R10 150 200 150 22500 20000 1 100 20000 , L 0.5H LC L i ( ) 0.12 0.045 A R = = + = = = = + = = = = = = = = = + o o o o t t s s s v t e e 100 200 100 200 ( ) ( ) ( ) (0.12 0.04) ( 0.045 0.03) ( ) 80 15 mA, t t R c t t i t i t i t e e i t e e t = = + + = > Q4. Referring to Fig. 9.43, L = 1250 mH so Since > o , this circuit is over damped. The capacitor stores 390 J at t = 0 : 2 1 1 2 2 So (0 ) 125 V (0 ) + = = = = c c c c c W C v W v v C The inductor initially stores zero energy, so Thus, 8 2 ( ) = + t t v t Ae Be Using the initial conditions, (0) 125 [1] = = + v A B 3 8 2 3 (0 ) (0 ) (0 ) (0 ) (0 ) 2 (0 ) 125 So (0 ) 62.5 V 2 2 50 10 [ 8 2 ] (0 ) 62.5 50 10 (8 2 ) [2] + + + + + + + + + + = + + = = = = = = = = + L R c c c t t c c v i i i i v i dv i C Ae Be dt i A B Solving Eqs. [1] and [2], A = 150 V B = 25 V Thus, 8 2 ( ) 166.7 41.67 , = > t t v t e e t 1 1 4rad/s 1 5 2 = = = = o LC s RC 2 2 1,2 (0 ) (0 ) 5 3 8, 2 + = = = = = L L o i i S Q5....
View Full Document

Page1 / 11

EE110_W08_HW 2 Solution - Q1. 1-stage: V1 1 0 DC 20 R1 1 2...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online