quiz3 - MATH 125 Spring 2008 – Quiz 3 Name 1. (6 points)...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 125 Spring 2008 – Quiz 3 Name 1. (6 points) Differentiate the following functions with respect to x: (a) f (x) = cos(x2 ) (b) h(x) = (x3 + 1) cos(x2 ). Hint: One may compute (b) using the result of (a). 2. (6 points) Let f (x) = 2x . x+1 a) Write f (x) in terms of x. b) Find x-intercept of tangent line to the curve y = f (x) at point (1, 1). 1 3. (8 points) A particle is moving along a straight line with position (measured in feet) given by s(t) = −t3 + 6t2 − 9t + 2, where t is measured in seconds. Write proper units for your answers. (a) Find the velocity at time t. (b) Determine when the velocity is zero. (c) When is it moving backward? (d) Find the total distance traveled by the particle during the first six seconds. 2 Brief Answer: 1. a) (cos x2 ) = cos (x2 ) · (x2 ) = −2x sin x2 . b) h (x) = (x + 1) cos x2 + (x + 1)(cos x2 ) = cos x2 − 2x2 sin x2 − 2x sin x2 . 2. a) y = b) y is −1. 3. a) v (t) = −3t2 + 12t − 9 (f/s). b) t = 1, 3 second c) Solve v (t) < 0, then when 0 < t < 1 and t > 3 seconds, it’s moving backward. d) Total distance is |s(1) − s(0)| + |s(3) − s(1)| + |s(6) − s(3)| = 62 feet. 2 (x+1)2 |x=1 = 1 . 2 by quotient rule So the equation of tangent line is y = 1 x + 1 . Hence, x-intercept 2 2 3 ...
View Full Document

Page1 / 3

quiz3 - MATH 125 Spring 2008 – Quiz 3 Name 1. (6 points)...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online