MA2222 - HW01

# MA2222 - HW01 - Department of Mathematics Name Poly ID...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Department of Mathematics Name: ________________________________ Poly ID: _______________________________ Instructor's Name: _______________________ Course No:_____________________________ Course Section: _________________________ Homework Section No: ___________________ Willis Thai 4.7-1 MA2222 HW01 If X is a random variable with mean 33 and variance 16, use Chebyshev's inequality to find: (a) A lower bound for W{ {. { . . . # . . {\$ '{ # - {4 . # (b) An upper bound for W{ . {I . 4 # {% '{ % {3 % # 4 {. # 4.7-2 If { { and (a) A lower bound for W{ \$ {I \$ { . { {I{{\$ . . # , use Chebyshev's inequality to determine: I {. %% . %% % . . {\$ %%%{ # (b) An upper bound for W{ . # # {' %%%{ % 4 {. 4.7-4 If Y is { (a) \$ {, give a lower bound for W } . } % when: JJ JJJ }#"" . # . . (b) \$ } . # { % 7 { I %{ . {# . }'"" . JJ JJJ % } . % 7 { % I % { Willis Thai % MA2222 HW01 . (c) \$ # . {% ' # { % . . }'"" . # JJ JJJ % } . # "{ % 7 { % % I % { . {' " 4.7-6 Let be the mean of a random sample size of from a distribution with mean and variance . Use Chehbyshev's inequality to find a lower bound for W{ % {. I . . I % . . {\$ '{ # 4 - . # 4 . # . . 5.2-1 # " #' % {, find: If Z is W{ (a) W{ I3 { { . { { { %% . % % (b) W{. 3 { { . - { %{ { % . % (c) W{ 2 . { { { . {I 3 . . - { % (d) W{ 2 %%{ . {I 3 %%{ . { %%{ . %%% (e) W{ % { { % {. { % { . % (f) W{ { { % {. { { . % (g) W{ { { % {. { { . % (h) W{ { {. { %%% { . { %% % % Willis Thai 5.2-7 MA2222 HW01 If X is normally distributed with a mean of 6 and a variance of 25, find: (a) W{ I3 { { { { { . { { I %% % . % % (b) W{ 3 3 { {. { { { . - { { 3I3 . - %% % (c) W{. I3 { {. I 3 . { { { . { { % . %% % (d) W{ 2 { . {I 3 { . { { . %%% (e) W{ . { {. { { % {. I { { . % (f) W{ . { {. { { % {. I { { . % (g) W{ . { {. { { %%% { . I { { . %% (h) W{ . { {. % { %% { . I % { { % { . %% % X , where Y is {. I { . { 5.2-22 The strength X of a certain material is such that its distribution is found by {. Find the distribution function and pdf of X and compute W{ W{ NOTE: The random variable X is said to have a lognormal distribution. { { { { { {I 3 { { { { 3 { #"{ \$ { 3 { { #"{ \$ I % . { { %% { . { . { . { 5.2-25 Assume that the fill X of a filling machine for a beverage has a normal distribution with and , measured in fluid ounces. (a) Compute W{ {. . {I 3 . { {. { {I { F . { { % I3 (b) In 50 independent such measurements, compute the probability that at least one is less than 12 ounces. ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online