Multivariate Calculus - M. Adler (2002) WW

# Multivariate Calculus - M. Adler (2002) WW - 2C2...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2C2 Multivariate Calculus Michael D. Alder November 13, 2002 2 Contents 1 Introduction 5 2 Optimisation 7 2.1 The Second Derivative Test . . . . . . . . . . . . . . . . . . . 7 3 Constrained Optimisation 15 3.1 Lagrangian Multipliers . . . . . . . . . . . . . . . . . . . . . . 15 4 Fields and Forms 23 4.1 Definitions Galore . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Integrating 1-forms (vector fields) over curves. . . . . . . . . . 30 4.3 Independence of Parametrisation . . . . . . . . . . . . . . . . 34 4.4 Conservative Fields/Exact Forms . . . . . . . . . . . . . . . . 37 4.5 Closed Loops and Conservatism . . . . . . . . . . . . . . . . . 40 5 Green’s Theorem 47 5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1.1 Functions as transformations . . . . . . . . . . . . . . . 47 5.1.2 Change of Variables in Integration . . . . . . . . . . . 50 5.1.3 Spin Fields . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 Green’s Theorem (Classical Version) . . . . . . . . . . . . . . 55 3 4 CONTENTS 5.3 Spin fields and Differential 2-forms . . . . . . . . . . . . . . . 58 5.3.1 The Exterior Derivative . . . . . . . . . . . . . . . . . 63 5.3.2 For the Pure Mathematicians. . . . . . . . . . . . . . . 70 5.3.3 Return to the (relatively) mundane. . . . . . . . . . . . 72 5.4 More on Differential Stretching . . . . . . . . . . . . . . . . . 73 5.5 Green’s Theorem Again . . . . . . . . . . . . . . . . . . . . . 87 6 Stokes’ Theorem (Classical and Modern) 97 6.1 Classical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 Modern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7 Fourier Theory 123 7.1 Various Kinds of Spaces . . . . . . . . . . . . . . . . . . . . . 123 7.2 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.4 Fiddly Things . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.5 Odd and Even Functions . . . . . . . . . . . . . . . . . . . . 142 7.6 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.7 Differentiation and Integration of Fourier Series . . . . . . . . 150 7.8 Functions of several variables . . . . . . . . . . . . . . . . . . 151 8 Partial Differential Equations 155 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.2 The Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . 159 8.2.1 Intuitive . . . . . . . . . . . . . . . . . . . . . . . . . . 159 8.2.2 Saying it in Algebra . . . . . . . . . . . . . . . . . . . 162 8.3 Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . . . . 165 CONTENTS 5 8.4 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . 169 8.5 Schr¨ odinger’s Equation . . . . . . . . . . . . . . . . . . . . . . 173 8.6 The Dirichlet Problem for Laplace’s Equation . . . . . . . . . 174The Dirichlet Problem for Laplace’s Equation ....
View Full Document

## This note was uploaded on 05/18/2008 for the course MATH 224 taught by Professor Macdonald during the Spring '02 term at Tacoma Community College.

### Page1 / 197

Multivariate Calculus - M. Adler (2002) WW - 2C2...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online