This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 12.5. A. ﬂight train travels at v = 60(1— e")ft/s, ' /
“there t ts the elnpsed' time in seconds. Determine the
distance traveled In three seconds, andthe acceleration at this time. , v {OOHe“)
/ 2 I.*‘!V‘FI:60(I—¢")¢
‘  600+ ﬁr:
r:
l H.113 it A.
l = E x “(9'5
Prob. IZ—ﬁ ' m a. IAII 127. The position of a particle along a straight line is
given by .t = (t3 — 9:1 + 15:) ft, where t is in seconds.
Determine its maximum acceleration and maximum velo
city during the time interval 0 5 t s 10 s. r=P—9t=+lsr 'u=d—I=3r'—18t+lﬁ
d! du_ ' H
“*dt_6‘ 18 ‘ I \' . am,occursatt=103.
aw=6(]0)'18=42W52 Ans
vmoccutswhent_=_103 em = 300)1 — 1300) + IS = I35 tits ‘12“. A motorcycle starts from rest at s = 0 and m f: a I
travels along a straight road with the speed shown by the . ,
vt‘grapht Determine the motorcycle‘s acceleration and ' a _ 1v _ o   A”. T
position‘when .t _= 83 and tl.= 12 s. d" 
A: = I'M: [0  item + (I—4tt5)  30 1301! A—
Arum:
g'.%=:5—5mh' Au
Ar=Ivk I. _ l I 3 3 .
30 I 5(4)“) ”1041(5) + ansIQ“)  5(3)“)(95) s“tn All 12.42. The H graph for a particle moving through an
“a‘éét'ric ﬁeld from one plate to another has the shape
'sh‘o'wn iii the figure, whenpf = 0.2 s and 11m = 10 III/s.
' Draw the 's( Lgnd H graphs for the particle; When
. 1 = i'ﬂslliapbrttiele is at s = 0.5 m. a
34:
,,
ii
52
{1 mo<1<€lia
5r; v Ill)!
:: a.
? ¢— 1”
. dz m '_ Mun/p}
{:7 I'd. I'mom
' ' ""
3 50!,
f mar0.“. toa
f—i 1'. Mil
“' Farm: <I<OJI I stun)
r v loo:+2o i
d?
11.3.. 1m 0.5
di Ill 04 I“ d: n In (IWI+ Md!
1 05. {.so:'+NIL5)
J I ﬂ?+mlfl Whal=0.23. Jlm ﬂ!) _,_— 1215. Aparﬂnleitmovingllongueti'nighllinesucil
thatwhnnitisattheoriginithnsavelneityufim/s.“ it begins todacclerateatthcrate at": = ("1.50”) Iii/E.
‘ where u in in unit. datamine the putinl'e‘s position and
 velocity m t = 2 s. ’u=g=L5v& . .
my: 4.5a: . f L zéﬂbmii 20:sz = —LSl ’ u=(1—i}.1'5.t}a m1: :1"; = (20.7:an . 0.25 mm A.
Ea=£a—o.7sn=d:= £(«3nasmﬂ a ._—4;—Ls:‘+a.ms:3 «ML; =4(2)»l.5(2)=+o.1875(2)’  3.5 in Au‘ 1222. The aqceleralion of a rocket traveling upward is
given by a = (6 + 0.025) m/sz, where s is in meters:
Determine the rocket'a velocity when 3 = 2 km and the
time needed to reach this altitude. Initially. tr = 0 and
_:=0whent=0. ‘ “turd!“ f: «womb é I, V‘"  1 ‘
“+0.019I‘zV; y=Jﬂl+OJnl° mat2000!“
y . 322qu A" It : Id!
I III+0511“ °' ‘  l2"
_Rl=mﬂm+lm+m. ’ Souml 't=1§$l A“ ...
View
Full Document
 Spring '08
 Kennedy

Click to edit the document details