Final_07_Sol

Final_07_Sol - MAE 143B LINEAR CONTROL ‘ Prof. M. Krstic...

Info iconThis preview shows pages 1–16. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAE 143B LINEAR CONTROL ‘ Prof. M. Krstic FINAL . June 13, 2007 NAME: Sol U’ho "3 PID: 0 One page (front and back) of your own handwritten notes. 0 No graphing calculators. 0 Present your reasoning and calculations clearly. Random or inconsistent etchings will not be graded. 0 Write only on the paper provided. If you run out of space for a given problem, continue on the pages at the end of the set and indicate “Continued on page X.” o The problems are not ordered by difficulty. 0 Total points: 60 0 Time: 3 hours. adammmmw w. .1.K1_,:A::w1...;u:.-:_ "men-1.4.x 14:,:,':,,1:,; '_; J '_.:/.>:,,u/, H . e. , 4 . ./ , ‘ r, . . 'w . _ a Problem 1: Stability (4 points) Is the following polynomial stable? If not, how many eigenvalues are in the right—half plane? p(s)=s5+254+353+4s2+55+6 Problem 2: Root Locus (12 points) Sketch the root locus with respect to K for the equation 1 + K 0(5) = 0 for the following: (a) (4 points) (3 + 4)(s2 + 16) G(8) I _ 5(52 + 9) Describe the nature of the stability of the system for different values of gain K. (b) (4 points) 1 0(8) : (s + 2)(s2 + 25 + 2) Be sure to mark Where the Root Locus intersects the imaginary axis. When the Root Locus intersects the imaginary axis, What is the gain K? (c) (4 points) (5 + 4)(s + 2? 0(3) = 5(5 +1)2(5 +6) 3d K“- 7 5(51+0\)+($+4/)(g Z+/6)(I) : O ; 252+ qg1+&53 tea—4) lo” 54qlo‘lll‘lfij 97/546!” 'I} Marginal” giggle, ‘Br H1?) SVSlEM") Uo;~qule ~Q>F ©<K<oo ‘ £04, V (SM (S 1+2; +13 4’” :O 53+L/527Lés HM“ : O 3 l C . A ' 4&5 ~ 903+er +‘L/7‘h30 64w1+#+k\ + (wfiewx : O Ser rm {mt 67W] 79; gm, WHA H290; ‘ 3.3 .V y ,4}. finnrifx ifigflfiyufifiMEp Problem 3: Bode Plots (12 points) Sketch the Bode plots for the following open-loop transfer functions: (a) (41 points) on; — 10)(s + 100) C(s) : (s + l)2 (b) (71 points) ‘ _ s(s+100) G05) ~ 32 + 13+ 1 (C) ('1 paints) 0(8):7i0fl__) - ‘ t " , 1 3232+105+100 r? ,V’ V, ‘x-_\ ’y—vi‘g :_ ,_ A‘ - .»/|<7;V‘J)H‘OM I 3)? M H (L '0 ~ )0 _ p 203g <UC)O§: 480 - 480 :71: -T‘\ \GUN , 048W" ’ (“520 ~ -90 {H 300 JO! “Oak 1:); \w """i‘f: /SJmU(L $0099“ VOW, o :5: \ Nashufef / 54W" 3"” §50~ -, _, w cow I .ml - J40 cm, Problem 4: Nyquist Plots (12 points) Sketch the Nyquist plot for each of the transfer functions in problem 4. What does Nyquist’s stability criterion tell you about each of the systems? (4 points each part) 6) GCS):,O\ w (3+bl ‘ . GM: {ofl(~)o)()oo): «mo ) «may 480 GCM: tOl j <GCQ'ao): 06’ Fkné CbeS'1qgs: : ,ojflow "O\():)Uf100) (Wm 4/) : O‘ug / r track? 005}; im‘f‘fmdioh“ «C(5CJ' w): 0 i; ufHM4fiqlqooo W2: *‘H ¥°If Qmw 910000) N :0 '<'GQ$O>: 010° G60”): ' / < 9mm“ LIMA CTO)5)A35: GQW) : *wl +IOOw3 _, x , x ,1 . WH +JWQ «(pH—'de : w4+7w1+<4q7fiw3w00wb M Cb) +‘l3 ‘ IM (Guam) :0 w(qq.qw‘vsoo):o blpox): 9913 w: 3.00)} 096’) (IQ—)EFSQCBOV‘ «a (42)) I C) WWW} : O (U : O -wf‘HmmJ' WNWL 56%; ' 961M: 3% K 10 A Cro§5mfi§t W”"“"*+"’W“ W‘fl-Ioowluoafio' wH-rooafwowd § 6 , ~~Iow +l2joWLI__IOOOW1>TL_’2Ow§T2/Oow3)d' Li 1 . Undth ‘V K 11 Problem 5: Bringing it all together (20'points) We can learn a lot about the behavior of a system from its Bode plot. Suppose we perform an experiment on a dynamic system, and we obtain the following Bode plot: Bode Diagram Magnitude (dB) Phase (deg) Frequency (rad/sec) (a) (4 points) Sketch the Nyquist plot. (b) (2 points) Determine the gain and phase margin(s). (c) (5 points) Determine the Ziegler—Nichols PID tuning parameters using the ultimate sensitivity method. (Hint: Find KL and Pu from the Bode plot.) (Use a straight edge to approximate the values the best you can) (d) (5 points) Determine the transfer function of the open—loop system. (Hint: Use Ku and the cooresponding w to find C (Use powers of 10 for your breakpoints) (e) (4 points) Sketch the Root Locus to confirm that high gain leads to instability. 12 LkJUV/X/ (“F/0V1 fl ,5 m _, Eu" W706?!“ :: [.39] m: 3m :. 1%; Km; Eip'w: “6:134/ , k1 fV-H/iztz/g, kgqyzg w 13 7x\/ ‘ C5 - Ml {kg at 25+ mSJriOo), r ‘ W ‘ZW U56 kw CtmL w: $0 Agkrm‘me éo' (72I'39r+g-’5*33.)-(100mg) “ 224 w ‘ fly?g»2;' -> ' ‘, “ ' gv WWW(~40):sz J ' 3)+(‘Ll-O31+3€O7}5 (Q29-(,7r33—67t72§9+§g¢;)J’2739 \ m6”?! MIR ' . 7 _ :i *0/436X'L/02253CO2)+3€ (22 4+6. (/57) :0. 3457 :‘31/600 I 15 16 ...
View Full Document

Page1 / 16

Final_07_Sol - MAE 143B LINEAR CONTROL ‘ Prof. M. Krstic...

This preview shows document pages 1 - 16. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online