math117 lecturenotes7

# math117 lecturenotes7 - 3 g 2.4-3pplioat‘xows 0 mama...

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3. g 2.4 -3pplioat‘xows +0 mama! Syskemc- Li—i (HEM , 486—482) . Hm am Some s‘wofﬂe examples cg We WWW“; 9* HA9 defwczhve . x AWAth ‘ E’L‘ﬂ‘Pﬂ. Comic!” a shone \Wed, :I/ng'loh WWWde vF'COM some 0.? A4; f>or 43-:15’“) Imwm {4x6 W's Squa)m 561: Mn M if“"‘/ board. sftm M 1m, Hm oh. M: b=;;:=1ro Shani: Hue dodgabntkzmmlc cg. \cuundvi “we, at {3:0 Hm, 5fong m We ihiHa’Q an IniHCondmm 5PM 1’; M at a later 42mg a; mu he»: spew vet). ' Neglew CM {richéw ) Newton’s scoond, la»: *3“ L“ “Wt 2.4.: m alm- =__ ( ) a; ma, 7 > \ m 9 mm Hm, force of arc/«n13 EYE (—ssm w'r.+'£m{> on He mks. kw; (1 Wm \ ‘ éwico. 51?” Wmsc 5% 0421:; {M Hue. . oﬁmﬁ‘xk, dim Hum Hu- ﬂour!“ because H: Mwlves Ha, dexivdziue 0;. “Hug, WWW» {1%. U". . Next we no’te, 4‘ka ,aﬁaim from. Pkgﬁcs) ‘HM; “befall 04% Stone. cut WW3 HIM. £>o {o (244.7.) E(fc)=1imr°’+ max met-c J L PMch my: \$181ng Now {Zeke Rae. Amwch 09 241(2) 'L'W 1:33 4cm» '. L 1 Rides d1 7.: %%=;%(aw)+§gmx) — ém-Zvéfwm > 43.9. owe. km mad/z & Wade aust ;In Hug, motion 05: CL Body in» ﬁne. pram/mo, «(493% oqu no {rickdou Jcbua fo’taQ 935\$ f ‘ . 3{. Hm boil: is ODVIQW Wvglwuk Ha Miran. .Thus is a, speolaﬂ cause 0;, a. Wag. htmzpte ‘mmck t7HQ£M\$b Com m Comemm gggﬁﬂ Pm“, A ReMOka ‘ The DE (2.1%!) is cw. emele_o.f. qukmqiicai’. MoWg mmw we E0040; 0‘- Pkgsa‘caﬁ phmmovx and. Maxim d Cw maHuzwaAicaQ «@amawaﬁz .lu, go M W made Some mphA'M (\$3., Jche shone is 6L mss‘we poGnh; {fiction is nea'itaible 5 H18 :31on {A on a, Si:de etc.) ’wkida. cw. 0K5 thwatdms +0 Hue Huska Jake mm“? mow {,5 M4; We max?» for ow» bWoSes we mask ac back m reformlm Hm. [problem Win More Sophish'caiiw, . This prams 10 av WW qu ggwwmggggiﬂ,m we sham, 529, W Mow. zxmples an we, 17mm 1/». Hm— 5% 0:; W18. As {Mm exampies cg math. momma; swj «er exampks on pages 48e-‘H2 (5x. 3‘3) 9-4, 5" 5) 8.4,, 8‘7) 01c HEM‘ a 18.3 A Examplgi. There is m emormows class 03C ijsécoﬁ. L"— pbxmum Hm}; COM be Wudixai 53 mm a; a Smwe MM,me MM cowsislwkﬁ 91; a, seam-oroemr DE— Haul-EA) Hm second, kadve o; m Mow—n, fob . These Pummq 9‘0 W Jzkt comm W 01C gimple Haxmm Nokious The Prot&jpe 0,9 suck \$3.5m; is 17M ” mass —\$\>r‘m<3," : spt1n% (in mlaxeat {70Wch ) a, [ya/mass (in equilibrium) / 7 f ’ / +'ab\e ’ / 5t O (a) NOTHTNG‘ MOVES — SYSTEM In Each. As 5011.. aﬂrmﬂ MOW} a. 2‘4—ovdsw Mix LS HM. dume 63*: M MWLU€\ So, 7C3?) is Hie {lob 9;. /+he cszkhecL shin Teach amwn A“ +0 Hooke's law 53' / I l/ 0 x X ([9) Miss Puma» 4mm PULLs BACk ma AFORCE —kx (k =s§wing mush) ( spring is compressed b3 H12 mass coming back .Jnence iﬁ NEIL now ” k a \ a} Pas back {412 mass m ) makmg overshook é‘u‘h' E agar“ _ I/ I I / O FficL-Lonlcss ’rablef 7‘ (C) SWING COMPRESSED _ NM. ’90:“ BACk m. {The mcd‘k model is obtained di‘feoHy 3Cram Nemon’s Second, law; ance H12 mama/{Lon L‘s H18 rai-e a; aha/.434; 0.? Pne We‘on )aAwL Hm. {s Jrkemzbe ogakanaz a; vaa diatom». awe) , so 4‘th accelemﬁan ._., 43' c gl,__ 4x ._._. 4226 we 4th?) :5; ’ Hma eclwabwn o4; Mobth is gfvw, 53 (QM-L 3) ’m (3/179 : .. \$026 (Ms; x 6.664,. = Tesuﬂkmd: 0.9 6H?“ ' «QB HW- {0th o'r ) more \$bmdamolﬂd ) “at? m‘ m") 2 1 (a‘q‘q> iiéi-t-Q)” =0 ) (131:.er ) MW 404%“ is caﬂzd. 1%; W {13% 94 He mama A E 12%. L21; we. lkaligﬂj Hne assumﬁiois MAI. Ow ow» prmedm: (L) mspﬂa Ms Been WeoL 1:0 be. tame ﬂu.) awe m puma/w; izkrmm is {undated wmupwuw". This {70mg owl: to be a. 40901 approximan gov» small dLsFlctaw/nks {I‘Muilibdow Me. Call. 02mg: mike. .E. =—kx-—kX1—k)(3—.... SPﬁua, ‘ ’- Lc 7c is sunﬂﬁww x”,x3, ...,m musuaﬂer M CM» be. d/uoﬁvul) [amt-(L5, ws NLH‘. Hook‘s 14"” {She—lax (a) Mai; W m... 2c. be mth 0* a (Hue We; mus paid) (an Mddolowless tame is mam imumcm «awn, in» some, calms Modal be. agoool Wximatohu (a. belting puck on ice, CC)sz Jco and.)\va fen} {iiich musk be Mute aaouh’c. (iv) What QbOWt W {arm 0.; W222 , Hue wag»): 9pm bodﬂ is mg mat acts WILL—{Mg down 5 but accofdivwar 'to Net-WWW 5 Mfdv 20M ("mam equw «@me Ha "tame MW. ~renal: «31% 0M. qua): 42cm. directed med/s ,st amton owl: Hm. e§¢¢ 01C “EST am, exam}: Watch". we must mm Hag E01919; pgfggug 33:4. ‘ Lac/(70m 41: M @125 ._ W. (HEH,491 -—’+‘M> L211, In ma”: Wad-Lon; o? Hue CCLQULQu/J one W5 +0 out 44% behavior 03C at. {Milan Mia/0"}: 60M «‘1: b3 tpoindr- For example , Sag -§({:)=?>t‘— Lil: mpm Some Physical cichibJ (cg. ) Mu. W3 0,9 a, 93mm ad: Jam k) .Qw 0.91. {784.9 4;;2. How Cam. we {:eM. whkher Hm \$05 0': cw km lanes 53 ) ) or 9:th ) wi‘khoul' Mania»? 5%? .ch. aim},me Cones “to +he Teswo. I“ -Fa-d7, one cow, have. (without wok 44m 1&wa (2.5.1.) Cﬁlmlom {0v mono‘koniglg; - Assume, f is Mmkiable on am W I} We §’(e)>0 m 1; shape 0; +ke. «Huen {9%) is increasing on I . 47am fine is >0 ' Stmnmﬁ’d } i‘?_‘FI&)<O ﬂy 6—— slobe 0? haw. {306) is dmmg on I. Rue \s <o [Loki 1 The WOTOL "Mohokonicalv’wm ~5%W1m% ” or ’Hlumﬁs . So a. mowohommﬂ {-017 on, I 2/; a. .Fd', WM “RI-PS Musing at am Hut. o.f.I. A Exmplgg. Anal/3 er W’LOrion "to .F({') = 39‘- iH: ‘ Sol‘n. Ham, TFICE) = 51;.” >0 {or Eaz . \$0,173 (2.5?!) Hz, givenfotis MsWQOM 2150 do. A AExmpLe’g. Coma” Hne. get: go) = 9‘ . In x1+2 3 Mud». h»th is —F- W 2 Hr \$o‘.‘n ‘ 4:160 = l~ M§+ZX+3)-’X(ZX+Z) :- _x1+r3 09+ 2x + 3 )7” mm 10:. W m We meal-Loni: Yule (Ear 2.2.7) (9.15.3).mﬁ Amado“? “to 3d». Mambode mike;me M m to wet M'Siﬂm of -f-’- How Hm dP/nnminaiﬁr a; 16’ is a. quantum So allurch [DOSH'Jiv-e ; So m Ha). W91- kaoL Msi- Le madam a; .g [,3 to mm.—IMS x<—ﬁ .f'oc)<o {-or —x7'+3<o )Le. {lov- x7‘>‘\$ or{ . ><>€ ‘ ' Hun/k Grafucomﬂ, £22333 4 My»? <——————-")“3’ r"_—~’-——" -1I 0' I 1‘ x -fg‘ {-3 {ME bow 0.5.41.9. Wow/121% Ls-ﬁmecu‘wt'to skew- “Wt §'C&)<o for c199. x>F§ (\$0.41) Hum er mh Hoe . . b a; l _____~._ < ~ 1‘ 0.99, W ML - gawk—kg 2+ 1-; £0 an: a, \$o¢lsb§wa, b > 4.) J3 . ‘ 0 So {ax we kcwc excluded Hm case §’C’O=o .wlwb Wm Hm». Nw,m WW deQaAg Hm. Mswm: 1‘: km. fate. o+okaa3e 12s 20w 0W Hm. wire in,th C£.e.,a:l- WK“! POM '4 I) M -F(*)=cous£mk amps: I. Hove 4%leafapkicawj , (25.2) I; ,9’:o am. 1,16% \$.1th on I, Gametficoﬂﬁj )Hu‘xa is obvious a; come ) gov f’=o ms Hm: {'ke 1m line is pamw to Hu— 26ath 41: «Ill poma I OK)'H‘\O,/c ‘l:6bkzg Cat/u o¥ +ke 0M4». Tm. «Alde .ECX) :0 «E0? 4J3!— X . Bwt SwioPOSe —S—‘(X,)=O cu: one high; 4.01mi: does Hm}: {or +ke beknw‘m 0.} -S3 .7 0.? 09qu ‘gm. oﬁweadﬁ mu) m -§wm solved; Maw , +‘w. we satin %tm 50» a. Swmmj 04 H19, wkote § 2.6 —9Pl:iml.%ajcion (HEM ) 586 _593) 2.0.1 0 Here is a sumwary 0.? Has whole thing )and am example, by Euler himsell? E A Example Find the maxima, the minima and the inﬂection points of the function x y-1+x Posterior, § 265,] 2 , and sketch its graph. [Euler, 1755, Institutiones calculi dlﬂemtialis, Pars Sol‘-‘ : The ﬁinction is deﬁned for all x (since the denominator does not vanish on R). Proceed as follows. 0 Step 1. Information ﬁ'om y’: ,__1-(1+X2)—x-2x __ l—x2 (1+x2)2 (1+x2)2 y = O :> x0 = i1 (stationary points), (l—x2)>0 for —1<x<+1 :> y increasing there, (1-x2)<0 for —oo<x<—l :9 y decreasing there. and 1<x<oo 0 Step 2. Information from y” : _ —6x +2x3 — 2 3 , (using Quotient and Chain rules). (1 + x ) and so =0 for x=0 and x=i-\/3—, —6x+2x3=2x(x2—3) >0 for —\/§<x<0 and J5<x<oo, <0 elsewhere. 0 Step 3. Sketch the graph using this information: Maxima, minima, inﬂection points of Euler’s example ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 8

math117 lecturenotes7 - 3 g 2.4-3pplioat‘xows 0 mama...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online