Fowles04

# Fowles04 - CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE...

This preview shows pages 1–6. Sign up to view the full content.

CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS --------------------------------------------------------------------------------------------------------- Note to instructors … there is a typo in equation 4.3.14. The range of the projectile is … 2 0 sin 2 v Rx g α == … NOT 22 0 sin 2 v g ... --------------------------------------------------------------------------------------------------------- 4.1 (a) ˆ ˆˆ VV FV i jk V x yz ∂∂∂ =−∇ =− KK K () ˆ F c iyz jxz kxy + + (b) ˆ 22 2 i x j y k z βγ (c) ( ) ˆ xyz c e i j k αβ γ −++ = + + (d) 11 ˆ sin r e e e rr r θφ V θ ∂∂ K 1 ˆ n r Fe c n r 4.2 (a) ˆ 0 ijk F ∇× = = conservative (b) 2 ˆ ˆ 11 0 Fk yx z = = − − conservative (c) 3 ˆ ˆ yxz = = = conservative (d) 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 ˆˆˆ sin 1 0 sin 00 r n ee r e r F rr kr θφ θ θθ φ ∂∂ ∂ ∇× = = KK conservative 4.3 (a) () 23 ˆ ˆˆ 2 ijk Fk xyz xy cx z ∂∂∂ = = c x x 20 cx x −= 1 2 c = (b) 2 ˆ F x yz zc x zx yy y = 22 11 ˆ x cx cz z ij k yy  + − + +   =− 0 xc x = −− c 1 = − a l s o 0 z = cz + implies that 1 c = − as it must 4.4 (a) constant E = 2 1 ,, 2 Vxyz m v =+ at the origin 2 1 0 2 D Em v a t 1,1,1 v αβ γ =+++ = D m v 2
() 22 2 m vv α β γ = −+ + D 1 2 2 2 m αβ =− + + D (b) 2 2 0 m + = D v 1 2 2 m  =+ +   D v (c) x V mx F x == ±± mx 2 V y y my 2 3 V z z mz 4.5 (a) ˆˆ Fi xj y G on the path x y = : dr idx jdy K ( ) 1,1 1 1 1 1 0,0 0 0 0 0 1 xy F dr F dx F dy xdx ydy ⋅= + = + = K K ∫∫ K on the path along the x-axis: ˆ dr idx = K and on the line 1 x = : ˆ dr jdy = ( ) 1 1 0 0 1 Fd r x y + = K K K is conservative. F (b) yj x G on the path x y = : ( ) 1 1 1 1 0 0 0 0 F dr F dx F dy ydx xdy + = K K K and, with x y = ( ) 1 1 0 0 0 r x d x y d y K = on the x-axis: ( ) 1,0 1 1 0 0 x r x y d x = K K K and, with on the x-axis 0 y = ( ) 1,0 0 r = K K on the line 1 x = : ( ) 1 1 1,0 0 0 y r y x d y = K 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
and, with 1 x = () ( ) 1,1 1 1,0 0 1 Fd r d y == ∫∫ K K on this path ( ) 0,0 011 r =+= K K is not conservative. F K 4.6 From Example 2.3.2, 2 e e r m g rz =− Vz + 1 1 e e z m g r r  +   From Appendix D, 1 2 11 xx x + =−+ + 2 2 1 e ee zz m g r rr + + 2 e e mgz m g r m g z r + + With an additive constant, e mgr 1 e z m g z r ≈− ˆ FV k V z =−∇ KK z 1 ˆ 1 z kmg z  +   2 ˆ 1 e z Fk m g r K , 0 x mx F ±± 0 y my F = = 2 1 e z mz mg r 2 1 e dz z mz mg dz r ± ± 0 0 2 1 z h v e z zdz g dz r D ± 2 2 1 2 z e h vg h r −= −− D 2 2 0 2 ez e rv h g −+ = D hr 4
2 2 2 1 22 ee e rr hr g =− D z v ( ) , e hz r ± 2 2 1 z e v gr D h From Appendix D, () 2 1 2 11 28 xx x + =+ − + 24 222 4 zz e vv h gg r =−+ + + DD 1 e h r  ≈+   From Example 2.3.2, 2 2 g D v h = 1 2 1 2 e v gr D And with 1 x x −≈ + , 1 e h r 4.7 For a point on the rim measured from the center of the wheel: ˆˆ cos sin ri b j b θ K vt t b θω == D , so sin cos v j v K ² Relative to the ground, ( ) 1s i n c o s v j v vi =− − K For a particle of mud leaving the rim: sin yb D and cos y = − So cos yy g t v g t =−= and 2 1 sin cos 2 v t g t D At maximum height, 0 v y = : cos v g t D 2 cos 1 cos sin cos 2 v g hb       D 2 2 cos sin 2 v g + D Maximum h

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 03/09/2008 for the course PHYS 301 taught by Professor Mokhtari during the Fall '04 term at UCLA.

### Page1 / 18

Fowles04 - CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online