Fowles07

# Fowles07 - Chapter 7 Dynamics of Systems of Particles 7.1...

This preview shows pages 1–6. Sign up to view the full content.

Chapter 7 Dynamics of Systems of Particles z 7.1 From eqn. 7.1.1, 1 cm i i i rm m = r GG 3 2 1 y x () 123 11 ˆˆ ˆˆˆ 33 cm rr r ri j j k = + + = ++++ G G k 1 ˆ 22 3 cm j =++ G k ( ) ˆ ˆˆˆˆ 2 cm cm d vrv v v i j i j dt ==+ + =+ + + + GGG G G k 1 ˆ 32 3 cm vi j + G k 3 From eqn 7.1.3, 12 ii i p mv v v v == + G G + G ˆ p ij G k 7.2 (a) From eqn. 7.2.15, 2 1 2 i = Tm v 22 222 1 21 111 4 2 T  + + + =  (b) From Prob. 7.1, 1 ˆ 3 cm j + G k 2 2 1 2 9 cm mv =×× G 1 3 v (c) From eqn.7.2.8, i Lr m () () ( ) ˆ ˆ ˆ 2 Li ji j k jk i j k =+×++×+×+ + G G ˆ 2 k omentum i ()()( ) ˆ ˆ ˆ Lki j j =− +− + − =− + − 7.3 bg vvv D Since m s conserved and the bullet and gun were initially at rest: 0 mv Mv g b vv γ , m M = 1 b D G 1 b v v = + D G 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
1 g v v γ =− + D G G 7.4 Momentum is conserved: 2 blk v mv m Mv  =+   D D 1 2 blk vv = D m M = 22 2 11 1 2 2 2 if TT m v m M    −= +       DD D 2 2 1 1 24 mv M m 4 D 3 44 i T v 0 60 o θ v 0 / 2 7.5 At the top of the trajectory: ˆˆ cos60 2 v vi v i == D D D G Momentum is conserved: 2 2 2 vm v m im j v G 2 2 v vj D D G Direction: 1 2 tan 26.6 v v θ D D D below the horizontal. Speed: 1 2 2 2 2 1.118 2 v = D v 7.6 When a ball reaches the floor, 2 1 2 mv mgh = . As a result of the bounce, v v ε = . The height of the first bounce: 2 1 2 mgh mv = 2 2 hh gg == = Similarly, the height of the second bounce, h ′′ 2
Total distance 24 2 0 22 12 n n hhh h ε εε =  =+ + + = −+   Now 0 1 n n a r = = ar , 1 r < . 2 2 0 21 1 11 n n = + −+ =−+ = −− total distance 2 2 1 1 h + = For the first fall, 2 1 2 gt h = D , so 2 h g = D t For the fall from height h : 1 hh gg == t Accounting for equal rise and fall times: Total time () 2 0 12 2 1 2 n n = + + =− + Total time 1 h g + = - v 0 /2 4m v 0 m 7.7 From eqn. 7.5.5: 122 1 mm xmm x x + ′ = + ±± ± 2 ) v t ( 121 2 x x ++ ′ = + ± 2 v c 44 4 0 5 2 45 c vv vmm m v m  − + +−+   + DD D 2 2 v = − D 4 4 t v v mm v       = + D D 2 51 5 442 58 v mv m v m +− D D D Both car and truck are traveling in the initial direction of the truck with speeds 2 v D and 8 v D , respectively. 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
7.8 From eqn. 7.2.15, 222 11 2 2 111 ii i v m v m == + Tm v Meanwhile: () 2 2 22 1 2 12 1 2 cm mv mm mv v m v v m µ +  += +  +  G G G G 2 2 1 21 2 1 2 1 2 1 2 mv mv vv mmv v vv m  =+ + + +  G GG G Therefore, cm v v 7.9 From Prob. 7.8, cm v v and since QTT =− cm cm = : Qv v From eqn. 7.5.4, v v ε = 1 1 2 Qv 7.10 Conservation of momentum: ′′ 2 1 m v m 2 2 1 2 2 2 v v v + 2 2 Conservation of energy: 2 2 2 2 212 2 1 1 m mvv v m 2 =−+ + 2 1 2 1 10 2 vm v v m +− = 2 2 v ′ = + 2 22 2 1 1 1 2 11 1 2 T T v −= = = + 2 4
2 1 1 11 2 1 2 4 1 2 m v TT m Tm mv µ == 7.11 From eqn. 7.2.14, cm cm i i i i Lr m v rm v + × G G G GG 12 2 ii i i v rm v r m v ×= ×+ × G 2 G From eqn. 7.3.2, 2 22 1 mm m m 1 1 R rr r  + =+ = =   G G Since from eqn. 7.3.1, 2 12 1 m m =− 2 2 m R r G G 2 2 i i v Rm v v µµ ×= ×+ × G G () R vv R v −= × G G Lr cm cm m v 7.12 Let m s

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 18

Fowles07 - Chapter 7 Dynamics of Systems of Particles 7.1...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online