Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ALBEDO ENHANCEMENT BY STRATOSPHERIC SULFUR INJECTIONS: A CONTRIBUTION TO RESOLVE A POLICY DILEMMA? An Editorial Essay Fossil fuel burning releases about 25 Pg of CO 2 per year into the atmosphere, which leads to global warming (Prentice et al., 2001). However, it also emits 55 Tg S as SO 2 per year (Stern, 2005), about half of which is converted to sub-micrometer size sulfate particles, the remainder being dry deposited. Recent research has shown that the warming of earth by the increasing concentrations of CO 2 and other greenhouse gases is partially countered by some backscattering to space of solar radiation by the sulfate particles, which act as cloud condensation nuclei and thereby influ- ence the micro-physical and optical properties of clouds, affecting regional precip- itation patterns, and increasing cloud albedo (e.g., Rosenfeld, 2000; Ramanathan et al., 2001; Ramaswamy et al., 2001). Anthropogenically enhanced sulfate particle concentrations thus cool the planet, offsetting an uncertain fraction of the anthro- pogenic increase in greenhouse gas warming. However, this fortunate coincidence is bought at a substantial price. According to the World Health Organization, the pollution particles affect health and lead to more than 500,000 premature deaths per year worldwide (Nel, 2005). Through acid precipitation and deposition, SO 2 and sulfates also cause various kinds of ecological damage. This creates a dilemma for environmental policy makers, because the required emission reductions of SO 2 , and also anthropogenic organics (except black carbon), as dictated by health and ecological considerations, add to global warming and associated negative conse- quences, such as sea level rise, caused by the greenhouse gases. In fact, after earlier rises, global SO 2 emissions and thus sulfate loading have been declining at the rate of 2.7% per year, potentially explaining the observed reverse from dimming to brightening in surface solar radiation at many stations worldwide (Wild et al., 2005). The corresponding increase in solar radiation by 0.10% per year from 1983 to 2001 (Pinker et al., 2005) contributed to the observed climate warming during the past decade. According to model calculations by Brasseur and Roeckner (2005), complete improvement in air quality could lead to a decadal global average sur- face air temperature increase by 0.8 K on most continents and 4 K in the Arctic. Further studies by Andreae et al. (2005) and Stainforth et al. (2005) indicate that global average climate warming during this century may even surpass the highest values in the projected IPCC global warming range of 1.45.8 C (Cubasch et al., 2001). By far the preferred way to resolve the policy makers dilemma is to lower the emissions of the greenhouse gases. However, so far, attempts in that direction have Climatic Change (2006) 77: 211219 DOI: 10.1007/s10584-006-9101-y c Springer 2006 212 P. J. CRUTZEN been grossly unsuccessful. While stabilization of CObeen grossly unsuccessful....
View Full Document

Page1 / 9


This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online