{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

img009xs3

# img009xs3 - 166 Chapter 7 Integration Techniques...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 166 Chapter 7 Integration Techniques, L’Hépital's Rule, and Improper Integrals voke-kl 32(1 — 5"" + ) 1 32 _ , 32(1—e-k‘) . _h 69- :13; k - 113:, k + £51009 > + —kr =11“132(0 te ) . V0 + 11m — = 32! + v0 k—>O 1 k—)0 e’“ 70. Let N be a ﬁxed value for n. Then . xN-1_. (N—1)xN-2_. (N—1)(N—2)x”‘3_ _, [(N~1)! El: 8" _}l§§c e" ‘31 e‘ _"‘_}1>"§c e" 71. Area of triangle: %(2x)(1 — cos x) = x — x cosx Shaded area: Area of rectangle — Area under curve X X 2x(1— cosx) — 2]. (1 —- cos t)d! = 2x(1— cosx) — 2|:t - 31ml) 0 = 2.x(1— cosx) — 2(x — sinx) = 25inx — lxcosx RatiO' lim x—xcosx _ lim l+xsinx—cosx 'x—mZSinx—Zxcosx xe02cosx+2xsinx—2cosx . 1+xsinx—cosx =11m——_— x—ro lxsmx 1imxcosx + sinx + sinx x—m 2xcosx + Zsinx 1imxcosx+251nx l/cosx xaoncosx+ZSinx l/cosx lim x+2tanx xaolx+2tanx 1. 1+Zseczx=§ 121112+Zsec2x 4 72. f(x) = "k; 1 k = , f(x) = x — 1 k= o1 f(x) = ”3.1—1 — 10(x°’— 1) k-OOl —x°m_1-l °°‘- '— 1 f(x) _ 0.01 00(X 1) _ k — 1 _ . xkﬂn ) 1:11-311‘ x k _ 111153+ 1 x lnx 73. f(x) = x3, g(x) = x2 + 1, [0, 1] 74- f(x) = %g(x) = x2 - M112] 1%) —f(a) = E f(2) -f(1) ’( ) gm — g(a) we) 3(2) — gm = 2ch) f0) - (0) = E —1/2 —1/c2 g(1) — 3(0) 26 —3— = 26 l = 3_C 1 1 1 2 "E 2 'ﬁ c =§ 21:3 = = 0. (See Exercise 56) ...
View Full Document

{[ snackBarMessage ]}