{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

img005hs6

# img005hs6 - 6 Chapter 6 Applications of Integration ——...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6 Chapter 6 Applications of Integration ——_ 29. The points of intersection are given by: 30. The points of intersection are given by: 33+ —4x+3=3+4x—x= .r‘—21t’=2x3 Mir-4H0 when x=0.4 x:(,2-4)=0 when x=0.:l:2 4 1 =f [(3+4x—x1)—tx=—4x+a)]dx A=2IE2x!—(x4—2x1)]dx o D 4 1 =I (—2x‘+8x)dx =21)“: —r‘)dx I 0 2:3 4 64 _[_ 3 +4R]o_ 3 Numerical Approximation: 21.333 [4:3 .I’z_128 31. ﬁx) = x‘ — 4x3. g(x) = x2 - 4 . _‘-ﬂl'. The points of intersecu'on am given by: x‘-— 4,221.: — x‘ — 512 + 4 = 0 {x3 - 4){X:- 1) =0 when x=:l:2.:i:l By symmetry. 1 A=2L[{x‘~4x‘)-(x1—4)]¢£t+2'[ [(x1—4J—w—4x1ndx =2£Ix‘—5x‘+4)dx+2f(—x‘+5x2-4)dx x5 5:3 =2[———+4x]; +2[—-—+—-4x]: -2[;-;+41+2[(-—+%—s>- (-%+%-4)]=& Numerical Approximation: 5.067 + 2.933 = 8.0 32. ﬁx) = x‘ — 4x2. 3(1) = x3 - 4x The points of intersection are given by: x‘- 4x3= :3 — 4.1: x‘ — x3 — 4x1 + 4x = 0 .10: - ”(x + 2)(x — 2) = 0 when x = —2.IJ.],2 = f" [w — 4x) — w — 41mm + f [(x‘ - 4x2)— (x3 — mm + [m3 — 4.; — w — 4.2)de ‘1 D 248 53 293 =__._+3_.+_..=_ 30 60 60 30 Numerical Approximation: 8.267 + 0.61? + 0.883 ~ 9.767 ...
View Full Document

{[ snackBarMessage ]}