{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

img024bp1

# img024bp1 - Section 6.2 Volume The Disc Method 25 8 10 80...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 6.2 Volume: The Disc Method 25 8 10 80 H— l- r —-I 1 l 3 (a) My) = '2'”! = 5(1 * 3})(%){l — 35‘) / \ 1—3; 1-3? = {in - fy)‘ \ J5 I , 2 _ Ji(1)_ J3 V‘To(1"/”_)dy_ 4 10 ‘40 "—l"”_" l l - 3 (d) AC3) = 51m!» = ”—32%: “ 35%)" = gt: - w 1 =3 _ a 1 = 3(L) = .1 V 21,0‘5’)” 210 20 H— |.- y—H 58. 'I'hecrosssectionsaresquarcs.3y symmetrywecansd S9. Assumn that the oil just hitsthetop of the cylinder, which upanimegral foraneighth of mcvulumeandmultiply mamthmmcvolume ofoilis omhalfofﬂievolume of by 8. the cylinder. Then we have = a = _ 2 2 . AU) 5 (VF: y J sin 20., = £31270“ 7 = 2 - V 850. J12)“. h=dsm7lf l r 511120“ = 8P” "3’31 1 Volume = Ehrrzh} = £3 3 = 3(g)1(d sin 70°) 2 2 sin 20" _ «d3 sin 70’ = 3 — —--—---8 sin 20, and calm“. 1| 60. Let Aitx) andAlbr) equal the areas of the mass sections of the two solids for a S x S 1:. Since A 1(3) = AZLI}, we have b b V: =[ 51h1d1=JI Maid-I: V: mummmesame. ...
View Full Document

{[ snackBarMessage ]}