# HW10 - Math 191 sin x x 8.2: 4 2 (+) HW 10 Solutions - - -...

This preview shows pages 1–2. Sign up to view the full content.

Math 191 HW 10 Solutions 8.2: 4 sin x x 2 (+) -→ - cos x 2 x ( - ) -→ - sin x 2 (+) -→ cos x 0 R t 2 cos tdt = t 2 sin t + 2 t cos t - 2 sin t + C 8.2: 8 u = sin - 1 y, du = dy 1 - y 2 ; dv = dy,v = y ; R sin - 1 ydy = y sin - 1 y - R ydy 1 - y 2 = y sin - 1 y + p 1 - y 2 + C 8.2: 24 R e - 2 x sin 2 xdx ; [ y = 2 x ] 1 2 R e - y sin ydy = I ; [ u = sin y, du = cos ydy ; dv = e - y dy, v = e - y ] I = 1 2 ( - e - y sin y + R e - y cos ydy ) [ u = cos y, du = - sin y ; dv = e - y dy,v = - e - y ] I = - 1 2 e - y sin y + 1 2 ( - e - y cos y - R ( - e - y )( - sin y ) dy ) = - 1 2 e - y (sin y +cos y ) - I + C 0 2 I = - 1 2 e - y (sin y +cos y )+ C 0 I = - 1 4 e - y (sin y + cos y ) + C = - e - 2 x 4 (sin 2 x + cos 2 x ) + C , where C = C 0 2 8.2: 26 u = x,du = dx ; dv = 1 - xdx, v = - 2 3 p (1 - x ) 3 ; R 1 0 x 1 - xdx = [ - 2 3 p (1 - x 3 ) x ] 1 0 + 2 3 R 1 0 p (1 - x ) 3 dx = 2 3 ± - 2 5 (1 - x ) 5 / 2 ² 1 0 = 4 15 8.2: 28 u = ln( x + x 2 ) , du = (2 x +1) dx x + x 2 ; dv = dx,v = x ; R ln( x + x 2 ) dx = x ln( x + x 2 ) - R 2 x +1 x ( x +1) · xdx = x ln( x + x 2 ) - R (2 x +1) dx x +1 = x ln( x + x 2 ) - R 2( x +1) - 1 x +1 dx = x ln( x

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 06/19/2008 for the course MATH 1910 taught by Professor Berman during the Spring '07 term at Cornell University (Engineering School).

### Page1 / 2

HW10 - Math 191 sin x x 8.2: 4 2 (+) HW 10 Solutions - - -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online