This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
**Unformatted text preview: **+--= +--= +--=---∫ ∫ y y y dy y y dy y y A y ∆ Solutions: Example Two Find the points of intersection of the two curves: x y x y 2 sin , sin = = 2 / ; 3 / or , 2 1 cos or , sin ) 1 cos 2 ( sin sin cos sin 2 cos sin 2 sin 2 sin sin π ≤ ≤ = = = = ⇒-=-= = = x x x x x x x x x x x x x x x 2 / 3 / 1 ( 29 2 / 3 , 3 / x y x y 2 sin = x y sin = The total area is: 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 cos 2 1 cos cos 2 cos 2 1 ) 2 sin (sin ) sin 2 (sin 2 / 3 / 3 / 3 / 2 / 3 / = -+-- --+ +-- + --= +-+ +-=-+-= ∫ ∫ x x x x dx x x dx x x A x ∆ x ∆...

View
Full Document

- Spring '08
- varies
- Calculus, Sin