Infi2_hw2 - 2 oeilib-2007 aia`(104281 2 itpi` 13 00 12 4...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 oeilib -2007 aia` - (104281) 2 itpi` 13 : 00 , 12 . 4 . 2007 ,iying mei :dybd jix`z xiip lr yibdl yi .qxewd ly mi`zd cg`l ec`n` oiipaa qt` dnewa dybdd :zxekfz xexiaa oiivl `p .micigia dybdd .wcedn yibdl `p .mixqlw e` zeiwy `ll A 4 lcebn .xry sca jxev oi` .oeilbd xtqn z`e ,f"z xtqn z` ,cinlzd my z` .1 zxfra :zepey mikxc yelya R dx √ a 2 + x 2 lxbhpi`d z` eayg , a 6 = 0 ozpida (`) zxfrae x = sinh( t ) davdd zxfra , √ x 2 + a 2 = t- x xlie` ly davdd y jka exfrd diipyd davdd liaya . x = a tan( t ) davdd sinh( t ) = ( e t- e- t ) / 2 , cosh( t ) = ( e t + e- t ) / 2 , cosh 2 ( t )- sinh 2 ( t ) = 1 , . tan 2 t + 1 = 1 / cos 2 t y jka exfrd ziyilyd liayae . x + p x 2 + a 2 ) | a | = s 1 + sin(arctan( x a )) 1- sin(arctan( x a )) zedfd z` ewiqd (a) .2 gippe [0 ,b ] rhwd ly znieqn dwelg 0 = x < x 1 < x 2 < ... < x n = b `dz (`) :miiwzny egiked . c i ∈ [ x i- 1 ,x i ] oxear zecewp c 1 ,c 2 ,...,c n y ....
View Full Document

This note was uploaded on 06/27/2008 for the course MATH Infi 2 taught by Professor Benyamini during the Spring '08 term at Technion.

Page1 / 2

Infi2_hw2 - 2 oeilib-2007 aia`(104281 2 itpi` 13 00 12 4...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online