qu - (zia ixery lr qqean 1 libxz:onqp-1 e x2 1 f(x =-e x2 0...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (zia ixery lr qqean) : 1 libxz :onqp -1 e x2 1 f (x) = -e- x2 0 y"na zqpkzn ef zeivwpet zxcqy e`xd .gn+1 x > 0; x < 0; x = 0; < |x| ik miiwzn x = 0 lkl ik e`xd .` = f (gn (x)) - e g0 (x) = f (x) :dxcqd z` xicbpe .a .[-1, 1] rhwa : .|f (x)| 2 libxz qpkzn an ik miiwzn an iaeig xeh lkl m` ogea zxcq `id n ynn ziaeig dxcqy xn`p 1 .limn Sn .limn an n = 0 m"m` n 1 = 0 ik e`xd .Sn = k=1 n onqp .ogea zxcq n idz .` 1 xeha eynzyd .a .ogea zxcq zniiw `ly ze`xdl ick n Sn .zipehepen an dxcqd mda an mixeh xear ogea zxcq e`vn .b : miiwzn da dcewp 3 libxz P idz .f (x, y, z) 1 dcewp lka ik oezp .zetivx zeiwlg zexfbp zlra f (x, y, z) 2 .(1, 1, 1) oeeikae P dcewpa f (x, y, z) ly zpeeknd zxfbpd z` e`vn .f (P ) - f (P ) = 0 : 4 libxz idz :egiked .Dr = {(x, y)|x2 + y 2 r2 } 1 r0 r 2 lim :onqp .(0, 0) - a dtivxe R2 - a ziliaxbhpi` f (x, y) f (x, y)dxdy = f (0, 0) Dr : 5 libxz 4 :lxbhpi`d ly zeqpkzd ewca x cos(x2 ) dx log x 1 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online