midsol - rvn` ogea oexzt - 104281- 2 itpi` 1 dl`y leabd z`...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: rvn` ogea oexzt - 104281- 2 itpi` 1 dl`y leabd z` eayg . lim x →∞ f ( x ) = A 6 = 0 ik oezp lim n →∞ Z 1 f ( nx ) dx :if` t = nx dpzyn iepiy rvap :oexzt Z 1 f ( nx ) dx = 1 n Z n f ( t ) dt = R n f ( t ) dt n ik lawzn lhitela yeniy i"r lim x →∞ R x f ( t ) dt x = lim x →∞ (R x f ( t ) dt ) ( x ) = lim x →∞ f ( x ) 1 = A x z` silgpe dpiid htyna ynzyp ." ∞ ∞ " beqn `ed oey`xd leabd ik lhitela ynzydl xzene : ∞- l zqpknd a n = n dxcqa lim n →∞ Z 1 f ( nx ) dx = lim n →∞ R n f ( t ) dt n = lim x →∞ R x f ( t ) dt x = A 2 dl`y ∑ ∞ n =1 ( a n n ) 3 / 4 xehd mbe qpkzn ∑ ∞ n =1 √ a n n xehd ik e`xd .qpkzn ilily i` xeh `ed ∑ ∞ n =1 a n ik oezp .qpkzn `ad xehd ik al miyp :oexzt ∞ X n =1 a n + 1 n 2 2 :mirvennd oeieeiy i` t"r miiwzn ik qpkzn ∑ ∞ n =1 √ a n n xehd okle qpkzn √ a n n = r a n · 1 n 2 ≤ a n + 1 n 2 2 . n > N lk xeary jk N miiw okle qt`l zqpkznd dxciq `id a n ik al miyp ipyd xehd xear okle a n < 1 ik miiwzn ∀ n > N a 3 4...
View Full Document

This note was uploaded on 06/27/2008 for the course MATH Infi 2 taught by Professor Benyamini during the Spring '08 term at Technion.

Page1 / 3

midsol - rvn` ogea oexzt - 104281- 2 itpi` 1 dl`y leabd z`...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online