{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

infi2HW12

# infi2HW12 - f x,y B r = x,y | x 2 y 2 ≤ r 2 “:egiked...

This preview shows pages 1–2. Sign up to view the full content.

12 'qn milibxz oeilb - 104281 - 2 itpi` .mixdva 12 : 00 dry cr -- 2008 lixt`l 10 :dybd jix`z A 4 lcebn xiip lr yibdl yi .qxewd ly mi`zd cg`l ec`n` oiipaa qt` dnewa dybdd :zxekfz sca jxev oi` .oeilib xtqne ,f"z ,zeny xexiaa oiivl `p .wcedn yibdl `p .mixqlw e` zeiwy `ll .xry 1 libxz :zedfd z` egiked Z 1 0 x p (log x ) m dx = ( - 1) m m ! ( p + 1) m +1 m N ,p 1 :mi`ad mialyd t"r n f ∂p n zeiwlgd zexfbpd mby e`xd . [0 , 1] × [1 , ) drevxa dtivx f ( x,p ) = x p - y egiked .1 .qt`zn x oda zecewpa wiicl ecitwd .drevx dze`a zetivx .uipail llka yeniy i"r m lr divwecpi`a zedfd z` egiked .2 2 libxz :`ad lxbhpi`d z` eayg I = Z 1 0 log(1 + x ) 1 + x 2 dx :dkxcd :xear I = I (1) miiwzny ewca .1 I ( α ) = Z α 0 log(1 + αx ) 1 + x 2 dx .mi`zn oalna I ( α ) xear miniiwzn uipail llk ly mi`pzdy ewca .2 .( α 1+ α 2 arctan α + log(1+ α 2 ) 2(1+ α 2 ) :daeyz) . ∂α I ( α ) z` eayg .3 aygl n"r α = 1 eaivde miieqn `l lxbhpi` i"r ∂α I ( α ) ly dnecw divwpetk I ( α ) z` e`vn .4 . I z` 3 libxz :onqp .ziy`xa dtivxe [ - M,M ] × [ - M,M ] reaixa ziliaxbhpi`

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: f ( x,y ) B r = ' ( x,y ) | x 2 + y 2 ≤ r 2 “ :egiked f (0 , 0) = lim r → + 1 πr 2 ZZ B r f ( x,y ) dxdy 1 4 libxz :lxbhpi`d oezp I = Z 1 Z 1-√ 1-y f ( x,y ) dxdy + Z 1 Z √ 4-y 2 1+ √ 1-y f ( x,y ) dxdy + Z 2 1 Z √ 4-y 2 f ( x,y ) dxdy . D divxbhpi`d megz z` exiv .1 :d`ad dxeva lxbhpi`d z` enyx ,xnelk .divxbhpi` xcq etilgd .2 Z b a ˆ Z β ( x ) α ( x ) f ( x,y ) dy ! dx eynzyd) lxbhpi`d ly xiyi aeyig i"re xeiva zeppeazd i"r :mikxc izya D ghy z` eayg .3 .( R √ a 2-x 2 dx = x 2 √ a 2-x 2 + a 2 2 arcsin ( x 2 ) :`gqepa 5 libxz :lxbhpi`d oezp I = ZZ [0 , 1] × [0 , 1] f ( x,y ) dxdy ghynd z` ze`xl eqp .eze` eayge miiw lxbhpi`d dnl exiaqd . f ( x,y ) = min { 1 , 2 y, 1 2 x } xy`k .xvepy 2...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern