infi2HW11 - a,b )- a zipeeikd zxfbpd ea oeeik miiw ik e`xd...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
11 'qn milibxz oeilb - 104281 - 2 itpi` .mixdva 12 : 00 dry cr -- 2008 lixt`l 3 :dybd jix`z A 4 lcebn xiip lr yibdl yi .qxewd ly mi`zd cg`l ec`n` oiipaa qt` dnewa dybdd :zxekfz sca jxev oi` .oeilib xtqne ,f"z ,zeny xexiaa oiivl `p .wcedn yibdl `p .mixqlw e` zeiwy `ll .xry 1 libxz ly sxbd d`xip ji`) xeyind lka deey dcina dtivx f ( x,y ) = sin( x + y ) divpetdy egiked .(?divwpetd 2 libxz : α xhnxta dielzd d`ad divwpetd dpezp f ( x,y ) = yx α + xy α x 2 + y 2 ( x,y ) 6 = (0 , 0) 0 ( x,y ) = (0 , 0) oeeikl ziy`xa zpeekn zxfbp zlra divwpetd α ikxr el`l ,dtivx divwpetd α ikxr el`l e`vn .zilia`ivpxtic divwpetd α ikxr el`le , (2 , 3) 3 libxz .zqt`zn (
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: a,b )- a zipeeikd zxfbpd ea oeeik miiw ik e`xd . ( a,b )- a zilia`ivpxtic f ( x,y ) ik oezp 4 libxz miiwzn x,y lkl ik oezp .zetivx zeiwlg zexfbp zlra f ( x,y,z ) f ( x, 4 y,x 2-y 2 ) = 2 x-3 y z` eayg . 1 `id (1 / 3 , 2 / 3 , 2 / 3) oeeika P = (2 , 4 , 3) a f ( x,y,z ) ly zipeeikd zxfbpd ik oke . P- a f ( x,y,z ) ly hp`icxbd 5 libxz zniiwnd xy`e zetivx zeiwlg zexfbp zlra divwpet f ( x,y ) idz xf 1 ( x,y ) + yf 2 ( x,y ) = 0 .ziy`xa awepn j` ziy`xd jxc xaerd xyi lk lr dreaw f ( x,y ) y egiked . x,y lkl 1...
View Full Document

This note was uploaded on 06/27/2008 for the course MATH Infi 2 taught by Professor Benyamini during the Winter '08 term at Technion.

Ask a homework question - tutors are online