classnote5 - “3/21 How Ski “ Ccntmucu‘s random...

Info icon This preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 12
Image of page 13

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 14
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: “3/21 How Ski “ Ccntmucu‘s random L/arrabLe For a owv‘cmuous Vat/WM V'c’~'“"WI 2% (W1 {IL/22 .‘nfrmi/ée number 4’ Maui's rl/l OVIQ 0r more '[VLWVC‘JS Hence Li’s mpamruglfks ‘ED fiche about fhe Pmbab’dlii‘j 0f Had? VMFMIJZ {la/201.3 & Spééf/‘c Valufl. For Outfit/mow; random VcU\ICLEL4, We always 016$me probabuwfl 1%r an mwm/d- FDV‘ examplg ,- 12f x rs a morwd dam/gum“ LUZ-Ha WEB/15.0,l/(w2znca:1 We [mew M 0mg WW oz 6 rm“; P5X= 0c) :0 5% PH-b‘KX < l«(>6)= M0 (H x< l~b5) ,: m5 PC—hbk x < 1.96) 2 M15 -— pmbabm/Efl magnum fundicn/ dengue“ : {3m ) Prom RSXS 7H6) 4 » K . 5" Tm I-S: 41M is wrrtinuwtfi, We Should expvdc fwd and {((x'm) are verb] [£032 +0 (Pctcin O‘H’IW‘ when £3; 15 V‘Q/Hj gmwu . PFObC ”XS X §. 'X‘FA) R {2‘90 X A ’ A N f means Iu&qgmcttotm, which rs Hm”: gamfi Idea as +14% sumrnah‘on m a discmie cage, “3:, “9“” 0‘76 dew'ces the Shaded arm in +he owl/e figure, .- szm P<x=a§=PCX=b>=V PMSXSB) : Pc‘asx <10.) '2 PQKXs'b‘) ;P(&<><<loj) 41" @7ka wmis, En ‘HAL‘S Ci/«aplcw, We 004% came about “16 QSruMd‘wg u .3" 17 BLUE 3“ HA8 dzscw’te mewaQ (1152, +11% 25. olé’fihiéetj m at Connect”; For QKCKMVLQ, 5M PCX‘P/S) : 1- PCX<5) :5: 8°“ “WHILE PLXas) : 1— Fax-$5), Hwen Hfs wrung .——— T A -JL .\‘ . n ’\ ‘ he vamaL Pé‘tmbwtzon / Grams/[UL 61,317,];5015/‘2312 a X N(/£L, {7 >, X ,‘5 mammal a/I‘ShA/‘Mt/lnl w r/ch mean = M and .S‘izmzlmvi d’gymfim 2 (7 p/wlmbléfi diS’h/‘ééafiML :fizichrm for X ,4, AND 0‘) : ‘PWQ -: .___‘____ - ["é( 10;")? +00 W D W F ~ ‘ ‘ L I: ,h’XM/sz ((th 7s ”CM! 7‘1)? mu] amémww ”Millmi Li’ltl‘FfléL; 07.01% [pm 3pm =1 m m: wswte we.) (1) The dewSWj funmcm "EU for X7» NIU‘O) {3' symmetric atomic/i j“ PCX< M) -: p( >041) ms CTWS F5 N9» W for W) ngmeztrk denS'zffl Winn) Q) X (cm W (ME! VRWQ biowi -06 and +00 r. The Standard Normm dis‘b‘l‘éwf/b/z» 1.; 25 m M ( 0. ‘1) g2 ‘3 _ ___ {MHZ S‘ 3;) : Loo E e l d} You can not Cd cuimée Hm :mffim {7/ yvuwéé Hum w *2 9W flu Mm fvr 5%de mmd d/sz‘m‘éwérém “The Slqadéai Ola/~82 (‘3 Pm!” 2 S 7") 9(me {mm ‘HIQ c[a§§ “my: {2Q s HIS“) -: v~cf744 " How Jco HQ? “HA? $th Gwen a numw 7;, how J09 new PM 2%) (—3;sz 0« pwbabit‘vfi P; W +,.; :fim +119 carmpondl‘mgr } 9% W4 2 <~ 3) t 0.72:! 7* ’r unknowh WWW“ 90“} [NOEL Z > 3;) ’2 0‘005 ‘ (4") P‘VHZ<‘3): 04613) ’f‘q 3%an [Wilma (,X WOFWJ diihfibtvb‘m 2::‘z—atfl' I? )( mNi’LLU‘), "H16“ 2:2(3—‘4 xv AND-I) W13 is five WSWE you gkcuM Mamas remember. Sim? wvz 011‘») («we +he {TM "EDP Sbvwiw Ami/n14 017$ h“ilact’cien, , 5"“ “990‘ '53 SEMMMER X/vA/(LLO‘) +30 Z~N(0-i) m Mal/v5 amigo“. P(x<es) pi x—50< 55-50) :2 * X~SD ‘3-§0 P( [D <Si0 ) =P(%<o.§) , tow: év This Can be obwmd firm; Jane mu E1 Pth) <X’< 55‘) '2 P<4O~Ofo < [xi—50< 55~§o') I ‘ (o ("o =F(—I< 2<o$> =P(2<0‘5) .- P(%<—l) :MCHA‘ «guys-1 Thpgp My “Lu-Marx 0W i . ‘. '1 w; = 05332 OWW fwm M Q Thzs cum -: 9:381 1.? E .NNEDJ) +14% X5421“ (72 A; [\/(LL(‘ 0—) EX‘avnpb 54"] Th Cfass Shwz. Exe MIL {mm Hum: XIV N (45.33 mm 2 s 35) -: MS => ‘16 W5 MS= WM 2 M55) 2 [7!»ng '3 M4 (mtg) (44:49) :[pr X $ 45+ BXMS) , 4W9? He’lcfl €91? S‘MMM (9am; M; gal'anM "T11 '— The Nomad APWOX‘I‘Inu-chon ~(:o the Binomial DE‘S'filv‘lmfzbn TLCG CQM‘U’EFC’ng - HP? '5 ‘nu—p) > ‘5 .L-f )(0 B‘m (n, P) and nP>S- mf—P)‘>’5 M new +hwt m was ofbHr‘Cul/t 4:0 calawe FWE ( XS 06> or PWH K2 06) M251 0( ?s 6* ‘(C ° 1‘ . b d w a ‘ gm W2 (WI “5’9 I’lorh’IcJ apprwkn‘mmffovl t1) 9va H173 pmb Lem . C'OVIS'TcrIQJ‘ ‘HIQ normal d is 11“?!) WHOM w (>611 and gtanclmd £49 URL/(lien 0‘ ; V/ WPXU—P) 0’ (F 0* IN _ n C1 P “‘17)- PG: §<X<I 5)::P(£L91<X.r~£ , I____s.u) PfI§4X<Zm P‘ 5L4fl<§lfi ( ( L when mP>§ and an’P)7>S‘, I+he (Ks/4r {—wc columns S‘hculv’ b0— C («>32 ”to I each «Tl-her, EXE has 9%“ HWz. We we +owat wen. ’cvuc ~ A c xL‘ 5+Iflel". («M columns awe we“: CW2 4» 9a TM NW“ 7: ~le: n? '= i8‘ X0«ol =a3< Is In my} ofifm hat/WU .1 1mm ‘to 3cm f0 Calculate Péxw') mm) Rug) 1 “”4 ban/2 mfg mwvlé- Q, 70 be cons/‘Sfm‘? Wi'fh'+/4i ”A'MWA Leis EI‘M Jw we pmwa'ém‘fir PM‘W‘USIM ‘- \ ‘ x..- 2 HEN X-‘Z‘ P( X=3) = irCz 0‘02 0 (18,3 '3 ‘9‘ 0325 ., ~ 25.03) Hyde‘s : ( "S‘O‘B Z ) P ) F 9‘54 <‘ < M“ / '3 W840?) ~ th< 2.2;.) N915 V911} Club-2“ In fac'é/ ‘HW one {1th 83%.?ka Calomlvdcion is mow +kow\ twice as +M> “(,me (”VFW X? h" Wt ROW w The mam Myrvxrmmrw. rs mt Qty-DJ _I OVLQ "Her“ Aim, The ~£eflwok 05/23 gm +0 [WW +412 man/ apprvX/‘mwéiom {‘5 Mi jzrw/ [:2] “1743;. +42 Emmi/mi Note .5" Emfff‘fml' [Null/1’ [fir normd Jlfs~hxiéav1L5M< 1W ’Jl/W‘péd dim?) 68/ 0% OLSEJ‘WHcM [we 7n ['uacr, UNI] Tm [14,301 LNW] HM. a]? we me how GPPWWJCM “:O‘ifl (y .-.» J l€x0.olxo‘/3 .2094». W“? 1M 0'} 1‘ £0.24); 03422] HQNJL : 'HAQ “WM appmmnwaon 57°33 “Hmt Y m a 39004 opporfiuw‘aj h» 3»? negative, wmdx is Tm‘mggzbug (For a Binomzal pizsbfiéwtlaal x, 90MB "SEW fill/{V13 v30“ ‘HIE wrung dwecfim to answer —Hm‘3 PNWM {H @ Theacwcze» Ht M / §Mlotmt€w w M- rs (mm?! Ccnfivxu‘iffl coweotioh fmm EXQ. 6"“) (b) I??? On my”. mm) : i~ P(><SI2) In normal Approximatwvh We we P(X=il) RV Pénrsxsuar) R (alcwewta-J Lot) usfwj mom/had wsfra‘buft‘om H‘kw T 0’ )5’fr/‘bi-L5f [c 1/1 harm a! C80 5.85 q: )(A/ N (8'2) \ 0-: Pmbl Xs%) '2 l7"Db( £38 < 3’78) -: [NEH -2<‘—2.9) = 0.0052 b: paw/179661;) ’= WON +33 3' £3? <; L2?) Z/WDM ’S 5% 2;) Z/vazg'zé’) - pldfl 25’ I) : 0.9738 - (284/5 25.152; d: Pmbéblé) : Pm“ Kg) (£38 = VIDELZ>49 2/- PméQSQ pmlongzp) )5 Vet]? claim 1’» .1. Ham {2% IS pogs'dgm £0 Watt [527w flaw né minuiP/x, Huz pwbm’all‘dj is MW? {7Vlg. x m [W760 50‘) a: PM ( x->/x) : 1» prvlpl X5 00 = l~ /7I’010(_X;75° _0(‘-76‘0') 0 5‘0 6.37 @ a» ThiS Is a Binomial dié'fribv‘vfim “‘2’” PM”? P: [02268; (0‘8) 91 (0’2) I; Ewt Li‘s odaf-Mccdi J'cv Cat‘cciiflcéo 3:»ny WM we we norm/1M wfzpwxl‘mdiem new _. UMP-:30 U :VW ‘2 4’ We (ale-Mair? ywla (‘843 sxg< gm) : [7mlo( 8+:'%”< ~le < “2&5 : PmL( (43 s 3s We?) : Fm'o ( 25/36) ~ WWQSN” :: ofilb2~w8708 = M4474 REMQWLe/r: we we PmHs‘H‘SX‘S my) {mm Hoe manual Di‘i‘hr. 40 appmxI‘W-vfe prefix'zgg) from +149 Bfflownaf .9}?!ng [3 We (alchodze Prolo( X‘sMS) {Rt/MW? FWBU§SX 5. 87) Should L9 app/,v/Y/‘mflsfg4 if! 1‘ mb (745 s Y5 87-9) {W +he prvwz/ 5/; swim/021 6‘87 -: [9.5" o 3 51:12: 65 since [mm X=7 5) is Qflfl/bX/‘mal‘ed 46: F19LL74YSX‘S799) from W HOP/mi oil‘sin‘évlt’b” rvrw/ [wold X187) 7S mmeX/‘majled 43 [Wbmb‘fs X’éWL‘) ‘f-rvm 1446 norm ciasirz‘bfiiom. V2390 [Zl’towfl , M Milk/Mm” Frvbi X22900): [MMX 37“!) ’ 2§:o§.0u) t 0",). \ _ 2§Covi4 _ 2 >1 Fmbt2< ago -ch => pro/M 2< 2&3“) Haw :2) 290044 a ‘2):0 ‘ on 2) M: 2:130- 290 xI'OLL : Zléé‘ WWW 09 6'87 “:2qo V5210 probi‘xcgm) —= [7mm ..)L‘(:_9°< W‘fi“) : 0317557 [WM ,4} (ewyfowz >322) -: i-— pmM Au we +|M~QJZ < 37») 3 : "' BMW k<w>)] :p-(,.q0;8])5 6-‘1‘7 ‘ IU? ‘38 V I I I “ t ’ [0‘6 1. ‘ 4.00 [0000 x cm; ~ \ 0.04867‘7é ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern