GPI_Final_Exam_Formulas_Fa05

GPI_Final_Exam_Formulas_Fa05 - Formulas: C 2 = A2 + B 2 ;...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Formulas: C 2 = A 2 + B 2 ; tan α = A / B v av = ( v 1 + v 2 )/2 v = dx / dt , a = dv / dt sin = A / C ; cos = B / C v = v 0 + at x = x 0 + v 0 x t + a x t 2 /2 C 2 = A 2 + B 2 2 AB cos θ v 2 = v 0 2 + 2 a ( x x 0 ) y = y 0 + v 0 y t + a y t 2 F AB =− F BA F = m a w = m g x = (2 a ) 1 b ± b 2 4 ac ( ) x = v av t R = v 0 2 sin 2 ( ) / g a x = dv x / dt = d 2 x / dt 2 K = 1 2 mv 2 E = K + U F s µ s N ; F k = k N F g = Gm 1 m 2 / r 2 U g = − Gm 1 m 2 / r v orbital = R GM v esc R GM 2 = T=2 π GM R 3 F kx U el = 1 2 kx 2 P = dW dt p = m v F = d p dt W = F s s = Fs cos xB B Ax A A B1x v= v ( m- m ) / ( m+ m ) ;v = 0 v B 2 v A 2 ( v B 1 v A 1 ) x Bx B AA B 1 x v = v 2m /(m +m ); v =0 m A v A1 + m B v B 1 = m A v A2 + m B v B 2 K f + U f = K i + U i + W other 2 00 1 2 tt θω −= + dL dt τ = = d ω dt = d 2 dt 2 = I v = ω R a = v 2 /r a = α R L = I ω = rF = Fr sin = 0 + t I ( cylinder about axis ) = 1 2 MR 2 I ( sphere ) = 2 5 MR 2 I ( rod about center ) = 1 12 MR 2 I ( rod about end ) = 1 3 MR 2 2 2 x A m k v ± = K = 1 2 I 2 I ( hoop ) = MR 2 x = A cos( t + φ ) = g / l = k / m mgd I =
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
f T 1 2 = = ω π sin( ) vAt ωφ = −+ 2 cos( ) aA t = L = mrv = mr 2 A 1 v 1 = A 2 v 2 P = P 0 + ρ gh p 1 + ρ gy 1 + 1 2 v 1 2 = p 2 + gy 2 + 1 2 v 2
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 07/11/2008 for the course PHYS 40.0333 taught by Professor Adler during the Fall '08 term at NYU.

Page1 / 2

GPI_Final_Exam_Formulas_Fa05 - Formulas: C 2 = A2 + B 2 ;...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online