Week11 Calculus - Section 11.1: 4. an 3n a1 31 3, a2 32 9,...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 11.1: 4. an 3n a1 31 3, a2 32 9, a3 33 27, a4 34 81, a5 35 243 18. Finite 26. an n(an 1 ), a1 2, a2 2(a1 ) 2(2) 4, a3 3(a2 ) 3(4) 12, a4 4(a3 ) 4(12) 48 3 ( xi2 1), x1 2, x2 1, x3 0, x4 1, x5 2 38. i 1 3 2 2 ( xi2 1) ( x12 1) ( x2 1) ( x3 1) ( 22 1) ( 12 1) (0 2 1) 5 2 1 8 i 1 5 5 5 5 5 46. i 1 (8i 1) i 1 8i i 1 1 8 i 1 i i 1 1 8( 5(5 1) ) 5(1) 115 2 6 6 6 6 48. i 1 (2 i i 2 ) i 1 2 i 1 i i 1 i2 6(2) 6(6 1) 2 6(6 1)(2(6) 1) 6 58 Section 11.2: 4. d an 1 an d 12 ( 8) 4 10. a1 4, d 3 a1 4, a2 a1 3 7, a3 a2 3 10, a4 a3 3 13, a5 a4 3 16 a1 4, a5 16 an a1 (n 1)d a5 a1 (5 1)d 16 4 4d d 5 16. a8 an a1 (8 1)5 31 4 (n 1)5 5n 9 a12 60, a20 84, an a1 (n 1)d a1 a1 60 11d ,84 a1 (20 1)d 27 a1 84 19d 84 19d 60 11d d 3 22. 60 a1 (12 1)d 60 a1 (12 1)3 26. a1 9, d 4, Sn n 2a1 (n 1)d 2 360, S31 10 2 9 (10 1)4 2 90 S31 5580, a31 34. Sn n 2a1 (n 1)d 2 n 31 (a1 a31 ) 5580 (a1 360) 2 2 31 5580 2(0) (31 1)d d 12 2 a1 0 Section 11.3: a3 16, a4 4. a4 8, n 5 r a4 a3 r 8 16 1 , 2 a1r n a1r 1 a2 1 8 a1 ( ) 4 1 a1 64 2 1 1 64( ) 32, a5 a4 r 8( ) 2 2 4 a4 18, r 8. an 2 a5 a1r 5 an a4 r 18(2) 36 1 a1r n 1 , a5 a1r n 1 36 a1 25 1 1 a1 9 4 an 9 n (2) 4 a2 14. a2 6, a7 a1r 2 a1r n 1 192 6 a1r a2 a1r 2 1 a1 an 1 6 , a7 a1r 7 1 r 6 a1 22 1 a1 192 ( 3 6 6 )r r r 2 a1 3.772, r a1r i 1 1.553 a1 (1 r n ) 1 r S5 3.772(1 ( 1.5535 ) 14.83 1 1.553 22. 5 Sn i 1 32. 625,125, 25,5 S a1 1 r ,r 5 25 1 5 S 625 1 1 5 781.25 Section 10.1 x2 9 y, 4 p 9 p 9 4 9 , axis 4 y axis 22. 9 Focus (0, ), directxy 4 28. ( x 2)2 20 y, 4 p 20 p 5, opens 5 units upwards vertex( 2, 0), focus( 2,5), y axis 5 focus (0, 1 ), vertex (0, 0) 3 22 1 )y 4 4 p ( 4) x2 y vertical p 1 4 34. x 2 x2 4 py 4( 40. vertex( 2,1) focus( 2, 3) ( x ( 2)) 2 vertical , p ( x 2) 2 4 16( y 1) 4( 4)( y 1) Section 10.2: 2 a) yes, b) yes, c) no=parabola, d) no=line center ( 3, 6), major-axis is vertical with length of 10,c 2 ( x h) 2 ( y k ) 2 1, 2a 10 a 5, a 2 b 2 c 2 b 2 21 b 21 2 2 b a 20. vertices ( 3,1)( 3,11); foci ( 3,8)( 3, 4);endpoint minor( 3 21, 6)( 3 21, 6); domain( 3, 21)( 3, 21); range(1,11) foci ( 3, 3)(7, 3);(2,1) on ellipse 22. center (2, -3); c 5 b (1) ( 3) 4 a 2 b2 c2 a 41 41, 2 41); range(1, 7) vertices(2 41, 3)(2 41, 3); minor endpoints(2,1)(2,-7);domain(2 a )e A P A P A P A P P(1 e) (1 e) e 94.6 91.4 94.6 91.4 .017 b )e 48. eA eP A P eP P A eA eP P A(1 e) A eP P (1 e) A P(1 e) (1 e) c) A A 29(1 .1944) (1 .1944) 43, 000, 000miles Section 10.3 4. A vertices( 10, 0)(10, 0), asymptotes 30. x 100 2 y b a 5x 5 b 10 5 b 50 y 2500 2 1 a 10; y b x a Section 10.4: 12. ( x 2) 2 ( y 3) 2 25 ( x 2)2 25 ( y 3)2 25 1 Ellipse 14. x 3 y 2 5 y 6 16. y only term squared Parabola x2 y 2 1 25 36 y2 1 ellipse line 18. x 2 26. J 34. x2 4 1 y2 9 x2 4 y2 9 1 hyperbola 46. Equals zero so None 62. 0 c ; focus(27, 0) a 64. b y x a 10; e a e c 27 10 27 2.7 ...
View Full Document

This note was uploaded on 03/10/2008 for the course CALC II taught by Professor Thornber during the Winter '07 term at Thomas Edison State.

Ask a homework question - tutors are online