{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

MT_8-17

# MT_8-17 - Tutorial MT Matrix Theory = I R R2 R3 Rn S = S RS...

This preview shows pages 1–2. Sign up to view the full content.

Tutorial MT: Matrix Theory = ¡ I + R + R 2 + R 3 + ¢¢¢ + R n + ¢¢¢ ¢ S = S + RS + R 2 S + ¢¢¢ : The value of this solution will depend upon its convergence, in a sense that relates to the matrices involved. Exercise 8. One can see by inspection that the Pauli matrices are hermitian and that their traces vanish. They all have determinant ¡ 1 : That each is unitary can be seen by forming the products ¾ y i ¾ i : ¾ y 1 ¾ 1 = ¾ 1 ¾ y 1 = ¾ 2 1 = μ 0 1 1 0 ¶μ 0 1 1 0 = μ 1 0 0 1 ; ¾ y 2 ¾ 2 = ¾ 2 ¾ y 2 = ¾ 2 2 = μ 0 ¡ i i 0 ¶μ 0 ¡ i i 0 = μ 1 0 0 1 ; ¾ y 3 ¾ 3 = ¾ 3 ¾ y 3 = ¾ 2 3 = μ 1 0 0 ¡ 1 ¶μ 1 0 0 ¡ 1 = μ 1 0 0 1 : Furthermore, ¾ 1 ¾ 2 = μ 0 1 1 0 ¶μ 0 ¡ i i 0 = μ i 0 0 ¡ i = i μ 1 0 0 ¡ 1 = 3 ; ¾ 2 ¾ 1 = μ 0 ¡ i i 0 ¶μ 0 1 1 0 = μ ¡ i 0 0 i = ¡ i μ 1 0 0 ¡ 1 = ¡ 3 ; so that ¾ 1 ¾ 2 ¡ ¾ 2 ¾ 1 = [ ¾ 1 ; ¾ 2 ] = 2 3 . Similarly, ¾ 2 ¾ 3 = ¡ ¾ 3 ¾ 2 = 1 , ¾ 3 ¾ 1 = ¡ ¾ 1 ¾ 3 = 2 , [ ¾ 2 ; ¾ 3 ] = 2 1 and [ ¾ 3 ; ¾ 1 ] = 2 2 . Finally, we can consider the anticommutators : f ¾ i ; ¾ j g ´ ¾ i ¾ j + ¾ j ¾ i . From Eqns. 28 and 29, we have

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}