{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

SOLDE_23-32

# SOLDE_23-32 - Tutorial SOLDE Second-Order Linear...

This preview shows pages 1–2. Sign up to view the full content.

Tutorial SOLDE: Second-Order Linear Differential Equations The solution is thus y ( t ) = 2 5 e ¡ t · cos ³ p 5 t ´ + 9 p 5 sin ³ p 5 t ´ ¸ + 3 10 ( t sin2 t ¡ 2 t cos2 t ¡ sin2 t + 2cos2 t ) : Exercise 23 NA Exercise 24 From Newton’s Second Law, the equation of motion for the (unforced) harmonic oscillator is m Ä y = ¡ ¯ _ y ¡ ky; where y is the displacement from equilibrium. The force of gravity, mg; is cancelled by the elastic restoring force from the original stretch in reaching equilibrium. We have, therefore, a = m; b = ¯ and c = k: Exercise 25 The equation for the charge on the capacitor is (for an unforced RLC circuit) L Ä Q + R _ Q + Q=C = 0 : Thus, a = L; b = R and c = 1 =C: Exercise 26 Using the form for the solution, A exp( ¡ °t )cos( ! 0 t + ' ) ; we have a £¡ ° 2 ¡ ! 2 0 ¢ cos( ! 0 t + ' ) + 2 ! 0 ° sin( ! 0 t + ' ) ¤ + b ( ¡ ° cos( ! 0 t + ' ) ¡ ! 0 sin( ! 0 t + ' )) + c cos( ! 0 t + ' ) = 0 ; or a ¡ ° 2 ¡ ! 2 0 ¢ ¡ + c = 0 ; 2 a! 0 ° ¡ ! 0 b = 0 : The second of these yields the expression for ° directly. The first then gives that for !

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}