M104-T3Rev-SU15 - Math 104 Test 3 Review Math 104 Test 3...

• 6

This preview shows page 1 - 3 out of 6 pages.

The preview shows page 1 - 3 out of 6 pages.
Math 104Test 3 ReviewJuly 25, 2015p. 1Math 104 Test 3 Review - Summer 20151Identities and Formula Sheetsin(α+β) = sin(α) cos(β) + cos(α) sin(β)sin(α-β) = sin(α) cos(β)-cos(α) sin(β)cos(α+β) = cos(α) cos(β)-sin(α) sin(β)cos(α-β) = cos(α) cos(β) + sin(α) sin(β)sin(2α) = 2 sin(α) cos(α)cos(2α) = cos2(α)-sin2(α),cos(2α) = 2 cos2(α)-1,cos(2α) = 1-2 sin2(α)Law of Sines:sin(α)a=sin(β)b=sin(γ)cLaw of Cosines:a2=b2+c2-2bccos(α),b2=a2+c2-2accos(β),c2=a2+b2-2abcos(γ)Area:A=12absin(γ),A=12acsin(β),A=12bcsin(α)Heron’s Formula:s=12(a+b+c),A=ps(s-a)(s-b)(s-c)De Moivre’s Theorem:zn=rn(cos() +isin())z1n=r1n(cosθ+360kn+isinθ+360kn)~v·~w=||v||||w||cos(θ)
Math 104Test 3 ReviewJuly 25, 2015p. 22What You Should Know and Be Able To Do1. Plot a point given the polar coordinates of the point.*2. Convert rectangular (x, y) coordinates of a point to polar (r, θ) coordinates.3. Convert polar coordinates of a point to rectangular coordinates..4. Convert the rectangular form of an equation to polar form.5. Convert the polar form of an equation to rectangular form.6. Use completing the square when converting the polar form of an equation of a circle torectangular form.7. Identify the center and radius of a circle given in rectangular form.8. Identify graphs of rectangular and polar graphs of common trig functions.*9. Sketch rectangular and polar graphs of common trig functions.*10. Plot points given in the forma+biin the complex plane.11. Find the modulus (absolute value) of a complex number.12. Convert complex numbers given in the forma+bito trigonometricr(cos(θ) +isin(theta)) form.13. Find the complex conjugate of a complex number in both rectangular and trigonometric form.14. Multiply and divide complex numbers given in trigonometric form.

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 6 pages?