Peschke - Biol Rev(2003 78 pp 181195 Cambridge...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Biol . Rev . (2003), 78 , pp. 181–195 " Cambridge Philosophical Society DOI: 10.1017 } S1464793102006024 Printed in the United Kingdom 181 Climatic variability and the evolution of insect freeze tolerance BRENT J. SINCLAIR " *, A. ADDO-BEDIAKO # and STEVEN L. CHOWN " " Spatial , Physiological and Conservation Ecology Research Group , Department of Zoology , University of Stellenbosch , Private Bag X 1, Matieland , 7602, South Africa # UNIFY Program-Biology , University of the North , Private Bag X 1106, Sovenga 0727, South Africa ( Received 21 December 2001; revised 17 June 2002; accepted 20 June 2002) ABSTRACT Insects may survive subzero temperatures by two general strategies: Freeze-tolerant insects withstand the formation of internal ice, while freeze-avoiding insects die upon freezing. While it is widely recognized that these represent alternative strategies to survive low temperatures, and mechanistic understanding of the physical and molecular process of cold tolerance are becoming well elucidated, the reasons why one strategy or the other is adopted remain unclear. Freeze avoidance is clearly basal within the arthropod lineages, and it seems that freeze tolerance has evolved convergently at least six times among the insects (in the Blattaria, Orthoptera, Coleoptera, Hymenoptera, Diptera and Lepidoptera). Of the pterygote insect species whose cold-tolerance strategy has been reported in the literature, 29% (69 of 241 species studied) of those in the Northern Hemisphere, whereas 85% (11 of 13 species) in the Southern Hemisphere exhibit freeze tolerance. A randomization test indicates that this predominance of freeze tolerance in the Southern Hemisphere is too great to be due to chance, and there is no evidence of a recent publication bias in favour of new reports of freeze-tolerant species. We conclude from this that the specific nature of cold insect habitats in the Southern Hemisphere, which are characterized by oceanic influence and climate variability must lead to strong selection in favour of freeze tolerance in this hemisphere. We envisage two main scenarios where it would prove advantageous for insects to be freeze tolerant. In the first, characteristic of cold continental habitats of the Northern Hemisphere, freeze tolerance allows insects to survive very low temperatures for long periods of time, and to avoid desiccation. These responses tend to be strongly seasonal, and insects in these habitats are only freeze tolerant for the overwintering period. By contrast, in mild and unpredictable environments, characteristic of habitats influenced by the Southern Ocean, freeze tolerance allows insects which habitually have ice nucleators in their guts to survive summer cold snaps, and to take advantage of mild winter periods without the need for extensive seasonal cold hardening. Thus, we conclude that the climates of the two hemispheres have led to the parallel evolution of freeze tolerance for very different reasons, and that this hemispheric difference is symptomatic of many wide-scale disparities in Northern and Southern ecological processes.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 15

Peschke - Biol Rev(2003 78 pp 181195 Cambridge...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online