Unformatted text preview: Bridge To Calculus HW #7 Last Name Firs? , whm‘ value(s) of a will make f(x) con’rinuous?
4Q :: q 1 +3
0 C G ‘ 4:: +3 2‘ Compute the limits. , $11223? , l—cos3£(/+OMJX)
a) 11m . ———————— we 2:? 1 Hana: I— ODJLJX
X‘Clmmt) 3 Figaci it“ and a; $0 that Tlixg2f(x) = f(_f2)_ @P (—2) : G 3:32, $4.0,
.12 x30. Given the following functions over The closed infervols, a’r whoT points in The domain does The function
appear To be (a) differen’rioble, (b) con’rinuous but no’r differen’riable, and (c) neither continuous nor
differi'en’rii Suppose u and ”it? are (iiffemntiable functions of :1: and that
11(1) 2 2, 213(1) m 5, 3(1) m 5, EU) = . Find the values of the following derivatives at :1? m 1. (a) ginv) :9 uv' +— V u'
u(l)v'(1) + vCi) u'Ct) The siope 053 {he nonnal Riﬂe to the curve}: 3 2X3 + 1 at (1 , 3) is for x i 0 and if f is continuous at x = 0. than k m
(A) 4.432 (B) «1 (C) 0 (D) 1 (E) 332 12 Find 3;; for .1»; +3: — 2;:  x2 = 2 Ld d _ :.
33£+X%E+%_2a% 7.x 0 13. The graph of y : {(x) is shown beioxv. At “dun values of x c1993 ﬁx) appear to be
nondifferentiabie? {M4, 4} by {45‘ 3} 'X:1,Xmllx=
.)X=:},X:=3 14. Is This function confinuous? Differentiable? AT x=0? f() 2x—3, 1$x<0
x =
‘ x—3, 05x<4 ,Cﬂ
©4303): “3
X“) z: #3 '1'“ Find The derivaﬁve:
Find the first derivative of the following functions. "’ u :s‘mx UL‘ 2 3 Jed3 X 15. y: tan (sin x) U l
: CJQJ X 15. Y: sec(tan (3x)) _—————h—_——1
_..»—+———~__________‘ 3 [1': Co: XSEC" (Sp/1K) __{x2+2x+1 ifxgl, 5x“: ifx>1 3 I.
xx —x xﬁi .Fl(x):€ 3n>¢ .. . m x2 + 5 1 < x _ _ _ 1m X
18. The functlon lS dlfferentlable everywhere. What is n? —9
a)
13 22142. +311:  [—I'irnl...
View
Full Document
 Fall '14
 Calculus, Derivative, following functions, $0, $4.0, xx —x xﬁi, $11223

Click to edit the document details