CSE_20_exam forumulas

CSE_20_exam forumulas - ‘ Theorem l.l.l Logical...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ‘ Theorem l.l.l Logical l‘lquimlulccs \ ‘ Gwen any slutcmcnl variables In}. und 1'. u tzlulnlugy t and u cnnlrudiclinn c. the t'ulluwing Ingicui cquivatenccs ‘ hold. ‘ . I nus nl‘ ‘ I. (ummnfurrw funny.- ;1 A q E q n p p v 11 E if V p b‘plmﬂm ‘ . ‘ ‘ 2. rh's‘urimr‘w hnrx: lp A q) '\ r E p A u] A r) 1;: v q) v r E p v” 1:; v r) ‘ U : I ‘ 3. Dr'xrribmiw Iem‘x: p A (1; v r) E [p A :11 v {p -’\ H p v (a; A H E (p \x q) A (p u H j \ . 1. E 4. Monti” fun-5': p A t E p 1; V c E p "" ‘ {I' fr : h' ‘ 5. Nz'gunrm l'uu's; p v w: E t p r'\ *—p E c _ . 77 1'1" ‘ (a. Durrhh’ HI’L'UHH' law: "1 mp) E p In If)" I E I!" 7. ldmrpnftlur Imus: p A p E p p v p E p ‘ m. a" 7 Jr‘ ‘ . ‘ 8. Umrers‘ul hmmd 1mm: {,1 v t E t p A c E c 1‘. V is H l I \ \ , , ‘ 0, Do Mrnjmm x fun-x: ‘vIp A q) E ~11 V ‘—q ‘vtp V q) E «p A ‘~({ It). Amurpn'rm Ian-1w: p v [p A q) E p p A. (p v q] E p , é l l. Nt’gminm of t and 1': x1 E L' we E t ‘ E i 4: g '5 E g IL: E E ’ ’ ": 7 , '2 2 :1 I ‘ um + l I ‘. " " 3 Numul li1cl|r~1nnllcgcr~ | I _‘ + - n : — ‘ - E _— :2' 5- 3 - : j E ' .2 ' ' ' ‘ J ’ “I 7 I E 3 = .:' '7 Humnl ["1IIWL‘FH\I|I" I + r' 1- r" + m + r : I : 3 :3 = 3 I 2 Z ': .: E _ __ I '5 E .5 .1 — '— i r : _ _ a; _ I'nIIIL- l..\.l Valid Argument Fnrms : ;_ g : — '7 _ IZI' inliun _ I 'I f' 'I 7 h- I’ '1' : t 2: Hindu!» I'Imrnk ‘ I’ ' I! ‘ “" ' ‘ ' ' 3 3’ .= 3: .- 2:. I» _1 I z: '— ' .: .‘LJ ‘ [I q . __ : .‘1 z : ‘ ‘ I: rl :3 _ L I‘l-f r 7 WW ‘_ __ I” _ ' f _ I III' | E El \lmllIN'IhlIou-a ‘ p « q 'l'ransilml) ,u a q : I] ‘l' r E v _ E ”_ ‘ , E _ t 3 (Evnerulimliml u. ,u h. .,u I'mnl'hy ‘ p .y E _ j' [I I” if Din-null Inlut uM-x I, , ,. a I w ' _ , , =-.. 1‘ _‘ ‘ Hpvrializuliun u. p u [L r' ' *r 3 "' ’ g 2:" ‘- ‘ I :1, a. r H _L_ ‘ In ‘ ‘f 7 7 _ 7 7 _ 1.3 E : (-mljumﬁ‘m ‘ ,, [‘nnlrmlmnnn Rulv ‘ p - . .2 ._' é; , - fl H r- -|- .E ’ _ - i g 2 s L ‘ n” ‘1' g _ c_ a : -' . ’ I —— if — — _ .F : ‘_' I .- 5 E S - = E.” 2 Theorem 4.1.] h d E S E. H E = g F‘ . . -. j ' - mun ers an r' .— '- .— L. .— "‘ —-' '~ - '1 3 .“ |- mil""‘ ' ‘ U u -- 5 3. ~’ It a," H.n+|.u".+1- ---‘“ "' 1"” b If; “I‘dqt’lmu‘ ﬂirt:er -- m' E‘ '- - — —‘ II - H ' ,' -' ‘ "man UHIH'] 3‘3 '—' ' "" Big? 5 3’ is. any real number. then th MINNIE! uIW'“ " 3’ ‘9; _ : z 3" : é" —: " r: ' J : : : : n u N -E. I A I: _‘—- -£ .— '— i:- u '3 r r: "J E H .4 7.4 ‘ I) = I”; + IN) = m . B '“ .‘J .C H .1 I H; + A ,. .. . .. . p— ._ _ 11 Azm kzm L=m ‘ t E i- ; _ " _ 4T 1" : — 3 '— H ” ‘v: l E ‘ ‘3‘.) 2f“ 1’ ': m . .‘ ; ' - JII ihulivc 1i!“ ‘ 2—: 1| — E E 2 t E m = I m. gumnllludthr ‘5‘ II ll = n (I 1.;Iu i="' .1. "3 _" I H n H 5 | E 3 t: é - .2.‘ ._ _ =4: -= I 1. nm - nhk =nm‘ b” .3 .- Ia ll 3 ._j '5. E. ‘2'" ﬁn." l:m i ‘ l‘ g .i E \ .r' u d 2" ’ z "-2 '3 _ Ch I 2 E a: s I _ _ E E — 7 — * ' i ’ ' 7 ‘ 3 I g- ", z : - .T ’ ’ _ 743’ '3 5 5L ' r ; : lhcurt‘ﬂl 3- -- _: = 3 . i , . . . , -' ‘ 11W. :7 '1 E h' H 3 \ w iwn cmhcculwe “REL—‘9'" m“ “W‘NIL p u ' E E : H H ' ' . _7 i _ i _ E — 7 - _ L. If H H I'lu'nn-m 3.4.1 “It: Qu:IlitIII-Hunuimlul‘ 'I'hmrcm (iiwn uny inIcgur H um] pmilivc inlugu‘r d. there His! unique mm.ch r; and r‘ r-IIL h that l 'I‘Iwnrt-In 5.3.3 i‘niquc l'ncturimlinn I'Iu-nrrm l'ur lhu inn-net‘s Il’umiaum-uull ‘l'hrnrvln nl' \rilhmulirl (iiwn .III_\ inlcgcr n m In. . _ . A In. mid pmliiw inuyclx r‘[. :1». .. n : dq + r‘ H = I'I It I". uml U; I" - .I'; "-lIL'i‘l .pL“ If. Ih.II I. Ihurc mm il pnxuixu iulcgcr A. lilNIil‘iCl [‘[illlL‘ quuhcrx I :uul an} nlhcrcxnrcwuu III II 11‘. :I prmlucl ul'prilnc numth i». inicniiml In Ihis L-wcni. - IIL'I'huns. l'nr li‘IL‘ order III \\ high Ihc LICIUR :nc \II‘IIIL-n. (ii\-‘cn:u1_\' rcul numhcr \. Ihu ﬁnur ul‘ x. dunulml III. I» Ilciincd m. l'nllmu: i_\ i : llIIII IInulnc illlugcr II HilL’ii lhnl II - I’H'i-i. 5y lulmlicully. ii'I ix In real numhcr and n i.» :11] hugger. Ihcn v Deﬁnition III j : II \ -- If -i- (ii\'Lfll;1l1_\‘ r'cul nnmhur \. Ihc cciliug nix. dvnnlul [I ‘ iri'I : IhIII unuluc iIIlch-I‘II \llL'ii lhul II 77 | i I '_ II. S) nlhulicully. II \ ikn I'L-ul lillllihL'l'illldH ixun il]!L‘_I1L‘1‘.iilL‘li - Definitions An intcucr H ix mun il'. um] uniy it". n out];le mic ii-l II'. and mm. If. H L'LlLllli\ In IL‘c «Inmc uncgcr plus I. Sunhnliuully. If” in am iuicggL-I. Ihrn - Deﬁnition \I'cul nunIhuI'r IH raltiunal II. .IIul unl} II. II c: H IN L'\L.‘|'I II Ix mid C? ‘1'? IIIIL‘L'CI'H \\I|h.1IIIIIIII'I'HIIL‘IIHIIIIIIMU!’ \luru lnunnll}. II I‘ H I'IIII-mul -:i- ii iuIcuL-I'a n and I! ~uch lilill :- H. c wmc inlcgcr. \n integer N ix odd Hun iIIIcguI'A such II'IIII n : I!» Eiun inIcgcrA such IhuIn : M + 1. ix LIL'l'iIIL‘Ii 3h I'Ullnwm I III hc mph-“ml In a Ilunlu-III :II' Inn \ IL'ili numth iiiill Ix nuI I.IIInII:Ii |\ irruliunul. I I ix :I I'ml Illllili‘x'f. Ihcn Ii I) .unl h T- H (iivcn II nnnncgmh c inlcgur H and LI pnxiliu.‘ inlcgcr r]. If (HI' I! : th illlcgcl' Lllll‘iiL‘i“ nhluluul when H' Ix L|i\ idud by cl. and H mm! d : Ihc iIIIcgcr I‘I‘Iuniudcr nhlnincd \I. hen II I\ tii\-‘i\iL‘Li hy If. S) mhuiicully. If” and I! urc melik-U iIIIcch's. II‘IL'II uhcrc I; IIIILI I' an: inlvgcrh IIIIII [I H (III I! : I; IIIILI II mm! If I I' «I, :27 H i II'II lrl cr 1:, th‘ uumuuy n l‘m-lnriul dcnnIcII ME. I\ liL'illlL'Li In hr Ii‘lt‘ ‘ L‘I‘~ I} In] I [H II: n c inlcu Imuluut HIKIII lhu inlc i‘ur cuch ['Imitii III: and I! an: inluucrx. Ihcn V‘ I l ! 'iH :H H! 'hle In I! II'. iViNI N de .uul uni} 13.1! : IPA I'uI \nmc IIIIL'L'L'I‘I'I. Zvru l‘m'turiul. iiL‘HUlL'ti Hi. 1a LiL'illiL'Li In he I: il\L'i\. \w m} IhuI \ilL'I H' H is. a multiple ni'u’. nr .! ia n l'uctnr III' u. “I III I! is a: (IiIimr III' II. I! (li\i(lv~. n. CI 'IIL: *3 WIN—CI In Wei \\‘.P\ii — i “'ii'iliiiii‘_ "Ii: ‘i iIIL'|| ilii: in. \ JIM I! .II'L‘ IHIL‘LEI'I'N. il I‘ "Hi ii|\ itih“ H iiiL' numnun II | n i» haul ” \xnﬁmduulh. "\iII .III- I III. In iilI II w -i Iliil I i I IN. i-‘III IIIIcuL-I'S ~III'II Ih.:l II 1.3 .I‘iII ...
View Full Document

This note was uploaded on 07/17/2008 for the course CSE 20 taught by Professor Foster during the Summer '08 term at UCSD.

Page1 / 2

CSE_20_exam forumulas - ‘ Theorem l.l.l Logical...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online