m251F04ex2 - M MATH 251 Test II Name Section There are a...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: M MATH 251 Test II October 26, 2004 Name Section There are a total of five problems. No calculators are allowed. 1. A function u = f (:13, y) is said to be homogeneous of degree n for sOme n > 0 --if f(t5’37ty) : tnf(x7y)‘ (a) Show that 2712016, y) + yfy(:c, y) = nf(:v, y). (5%) (b) Show that m2f$$<£7y) +y2fyy($7y) :n(n_ _ (c) Show that fy(tx,ty) = tn‘lfy(x,y) for all t > 0. l o I (5%) (d) Show that xfz(2a:, 23/) + yfy(2:17, 23/) = n - 2"_1f(x, ' (5%) (e) Let n: 5/2. Give a concrete example of a. function f (any) that is homogeneous of degree 5/2. (5%) [M1314 (a) F’vm 1L(+x,t.1):t"+cx,vp, mu it: 474E-{4-l-x, {11) =1 fl? [(-"fgxfld : Mffiym'j). ArplvwwmafimWWA/mum: . ® fifwmm): _::_3{3}L¥fi7)igx)+ ifiix,m)%+v):fl_afibe)+jifiwv)= n+"jf‘x'tp‘ wt 97 9X I M tzl We OHM NM 967%Lx,‘1)+71§‘*'”}):"+“"9- Lb)Taug%4aMWo+®m: ' flaw/*7): fa[*%’”‘”’+v—£‘9 23' fl=%<-c“+m> WW”. “"11 AW w wwtw W mmm: 4 'b‘Jf) 47x35) — .31.. ,i— 4 (fi, 235%} 7+jfigj—JJ—thfi‘b‘ wwm'f" h’) ’ of ) = x [hxwxfi'fl 12%) + t7t+xkj)§éwj+l1 09,1153) 0%") + “(10,197 mafia : X [fighfi‘jfl + m1(-l:)<;l'\j) ‘jj+lj [qud’xflfiflx +fl17(fx,f\j)fi :xlz’fix (flit-7) +zx113§7 (f-x, +jlfi7 (76x, 1‘73): 0401-4) t’wths‘j). A-jmla) Ad‘ tit!5 Xufxx(x’9})+zxjfijcx,v) +jzj€17(£)7):n(n—I)f(x,j) .. (a) H _ (i1 _ 2 n ; n .3; erxfij) - fitfxxj) 39;); flaming WE {W19 t jam): #4” ln ff¢b<ky= 1-" fix”) We) véro‘tL Mala, W 067,24,“ J3.(tth-n);f 3309:). >< flamw) +747W‘I‘7): 74- ijicm) . > (8/) FW ML“) 1 +¢W= WW4" r/L Name 2- Given f(x,y) = (a: + 1)4 + 256(y — 2)4 + 16mg _ 2) + y] _ 90, (a) find all the critical points of f; (10%) (b) determine the local extrema of f. (5%) [Hint: Calculations will be simplified by setting u 2 36+ 1, v = 4(y— 2), and by writing 16[x(y — 2) + y] in terms of u and 1).] MMSJ bit-XH ml tr=z,L(j.7_)_—nW [99014991]: l6[xu1~;)+(tr7«)+2j :lla[<x+l)u1-2)+Ll = 4-[@+‘)}[4014)l *3; 5'- 4’140‘4'37’ MA 41M): 144+ U4+4w+32401 “it V4+4W~§9§° Fwy), We we yeti-WA lament +<m> £11 (“m-«7th WM W of FOLfiO. '5 .. 1E: 3 $20 =‘> M44120 {n+4 fiuz‘v} a: 34M: 0 .. _ 0 :5 7f av- "4' 0: M3Hf=<~vfif+1f= “Va-t U30 0 = “177' U: (U‘tl'l)(v%+l) (UH) (711-00210 0’) l3“: 4'5'(X+02>2£97 +x = lé. 3c =z5-é-‘t‘3L7-‘Q , 7 4,1 9 LI“) dr(x17):(o/ a) At 0,7)44279) «FOAH"17)=(“ZIT), D: 12~(Is.4-3)-2%>o) ,_ D=IZ~ (6-4-3 «254le D-{, ]L -f—fzoqevzyuo. ( ) fxx=12>a ... xx ‘1“! 7 _, Malz>0 \ ~ maxi-04AM gflmrtma mm_ Name 3. (21) Find the maximum and minimum value of the function f(:c,y,z) =4x+2y+32 subject to the constraints 2x + 2y + z = 10, 4(y + 1)2 + 22 = 16. (14%) (b) What is the name of the surface 4(y + 1)2 + 22 = 16? (3%) (0) Give a sketch of the constraint set. . (3%) (4) 4d“ fikxiv,}): zx+z7+3§ to, M7819): Q-Lg-anfité TL“ V-j—m m) ='- M73091, wakcmw) .4':)\'2.+)4'0: 11A.2 174- 3'01H)) 3=l“9‘+/b2% ‘ I An; {2=4+p-9m+~1) 5,) win-i? 5=4+jkzy : .1 L l 7- t __L_ 1 x6: 4-(t1-H)1+'5.2‘: 4:(~£—};) +(--;3_‘-*7) =(Z-4' 4. Pu 372 ...—! " [4 = :1’ —%~ "' 8 (‘7 =11 - =_-_L_.§2:-1— "' =-—'~——:.-=+2J; /‘ 5’ ‘j ‘ +4? I A1113 2w]: 0,-1.9):(5’4figzn) x = 41- (lo—z», 77,) =5—(-l-~I1)~-L-(+2J'i)= 5 +0.43% 4~ 6 Jae—4:) 43(142) = 22. + “‘2 (W) .. 2 - E _~ ,, Whig-é i=~l+i-;%=-t+n,g-4i<- g)~ 2m (X) 33’)=Léx‘l+ "2- 7, “2i‘(1°4H'3')=r%(10)“(-l+~]”{)--§;(~zfi)=6 7 4 “E; 4‘) that): «an zc-l+J:)+3(—2J2): 22:44: (W) Name 4. (a) Evaluate /00 e_(”2+bm+c)da: for a > 0,1) 6 R and c > 0. (8%) (b) Use part (a) above to determine /Oooe“(“$2+c)dx, for a > 0. (4%) (c) Use part (b) above to evaluate / ooac2e"23‘2d:1:. (4%) I 0 (d) In part (a), can we evaluate the integral if c < 0? b g- M (4%) b 1, to. _(M+bx+o) 50¢ -(aqb+b7+6) ‘ me- fix +3.71) “weak. 56401333— A’X'Me/ 4’7"...“ '3‘ -00 ,a. b -> 96 El" 3.121") d ) ' , M22 “" 2 UM] W M Ul m by. u 1’; ,0) 9° -atxz’w") v bt‘c’ .904 ,qji' W‘0 M 8 (II/X M -Ax ‘ _ '13 S a 51/17 = 6 : a x = S a ‘LX a Do 2- " ' -Do " 1 113a_(/) 1.1)” M r7, V $ ,6 Sgedq rdvié L I M _' a o 2. 1 ,L' 1'2.“ ELC zlfieé) Tl’ 2(4—93-0) . 1 «our J -_—-. 6““ ). fl— = “"5" a a 2m“ “30:6 no '94 L . . f b .. “111W 1» ~cax”+bx+o) 474$} .1. _‘ 9:“ 30f 9/ ‘ olX: @ ox pa )E”+c) g f%:o)we.ltm :- 4“" 6 -7:'. ‘ p mwv a ti» m7” VW’J 8%“ (b) 547 A1 :Zof ' 4?— 7? w ems-7t,— v m 1 - 12. “"4"” «xi-Elli} (a) Sodxz’e‘a'xdx; 50 [email protected])d>(“ "Xenia AX «’04 236». .._,L_ 11 MMMAZZ) l “ 24 "oi? ( I __ L H 11; 50m%‘6”d%=‘§a)l—Ez “5‘4 2 ~ "tie. (cock «WM/MQCMAWA/Bi C WM gooe~CaX$+bX+ylocx A fit (+th A’finqt —04 Name 5. Consider 1 4 / / 003(3w2 + 12x — 5)dacdy. —2 (y—Z) NIH (a) Sketch the region where the integral is evaluated. ’ (b) Evaluate the integral by changing the order of integration. [4. S4 SWBXL+12X~§M><47 " -7- '51“) ill View“ 2X-99474X .L -1. l :5 WM‘HZX'S’) [‘6 ‘1 ~ (5%) (15%) ...
View Full Document

This note was uploaded on 07/22/2008 for the course MATH 251 taught by Professor Skrypka during the Spring '08 term at Texas A&M.

Page1 / 6

m251F04ex2 - M MATH 251 Test II Name Section There are a...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online