ps3_soln - num_H =[1(L*Cp 0 den_H =[1(1/Ro/Cp R/L(1/L/Cp(1...

Info iconThis preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
EE 497E Problem Set 3 Solutions -7- Problem 1:
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
EE 497E Problem Set 3 Solutions -8- Problem 1: % EE 497E Spring 2008 % Problem Set 3 Solutions % Characterstic impedenace of interconnect cables Ro = 50; % Probe Coil L = 8e-6; R = 5; % Operating frequency fo = 5e6; wo = 2*pi*fo; % Find Cp and Cs Cp = 1 /( wo*Ro*sqrt(R / (Ro - R) ) ); Cs = 1/(wo^2*L - wo*sqrt(R*(Ro-R))); % Zin(s) num_Zin = [L*Cs, R*Cs, 1]; den_Zin = [L*Cp*Cs, R*Cp*Cs, Cp+Cs, 0]; % find Zins(s) over a 500 kHz region centered at fo span = 500e3; Npts = 10000; f = fo + linspace(-span/2,span/2,Npts)'; w = 2*pi*f; s = 0 + j*w; Zin = polyval(num_Zin,s) ./ polyval(den_Zin,s); % plot real and imag parts of Zin figure(1) plot(f/1e6, real(Zin), f/1e6, imag(Zin)) ylim([-59,59]); grid ylabel( 'Ohms' ); xlabel( 'Freq [MHz]' ) legend( 'Real part Zin' , 'Imaginary part Zin' ) % Transfer Function Vi/Vnr
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: num_H = [1/(L*Cp), 0]; den_H = [1, (1/Ro/Cp + R/L), (1/L/Cp)*(1+R/Ro) + 1/L/Cs, 1/(L*Cs*Ro*Cp)]; % Find the magnitude and phase [mag_H, phase_H] = bode(num_H, den_H, w); % Find the Q-factor max_H = max(mag_H); index_fo = find( mag_H == max_H ); calc_fo = f(index_fo) index_3dB_BW = find( mag_H >= max_H/sqrt(2) ); calc_3dB_BW = f(max(index_3dB_BW)) - f(min(index_3dB_BW)) Q = calc_fo/calc_3dB_BW % plot the Bode plot figure(2) subplot(211) plot(f/1e6, 20*log10(mag_H), ... f(index_3dB_BW)/1e6, 20*log10(max_H/sqrt(2))*ones(size(index_fo)), 'r' ) title( 'Bode Plot of Vi/Vnr' ) legend( 'magnitude response' , ... [ '3 dB Bw is ' , num2str(calc_3dB_BW/1e3, '%0.5g' ), 'kHz' ]) ylabel( 'Mag [dB]' ) subplot(212) plot(f/1e6, phase_H) ylabel( 'Phase [deg]' ) xlabel( 'Freq [MHz]' )...
View Full Document

Page1 / 13

ps3_soln - num_H =[1(L*Cp 0 den_H =[1(1/Ro/Cp R/L(1/L/Cp(1...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online