Example_Outliers_data_pairs - Example data for outliers in...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
J. M. Cimbala This example is done as an in-class example. i x y Y zero line 1 0 3.7 4.81 1.11 0.26 0 2 0.1 4.2 5.52 1.32 0.31 0 3 0.2 5.1 6.22 1.12 0.26 0 4 0.3 6.6 6.93 0.33 0.08 0 5 0.4 7.4 7.63 0.23 0.05 0 6 0.5 8.9 8.34 -0.56 -0.13 0 7 0.6 10.4 9.04 -1.36 -0.32 0 8 0.7 10.9 9.75 -1.15 -0.27 0 9 0.8 11.9 10.45 -1.45 -0.34 0 10 0.9 11.5 11.16 -0.34 -0.08 0 11 1 12.2 11.86 -0.34 -0.08 0 12 1.1 14.7 12.57 -2.13 -0.5 0 13 1.2 15.3 13.27 -2.03 -0.48 0 14 1.3 16.8 13.98 -2.82 -0.66 0 15 1.4 17.2 14.68 -2.52 -0.59 0 16 1.5 5.6 15.39 9.79 2.3 0 17 1.6 19.5 16.09 -3.41 -0.8 0 18 1.7 4.5 16.8 12.3 2.9 0 19 1.8 21.3 17.5 -3.8 -0.89 0 20 1.9 22.5 18.21 -4.29 -1.01 0 Perform a regression analysis to calculate the best-fit straight line through the data: SUMMARY OUTPUT Regression Statistics Multiple R 0.71 R Square 0.5 Adjusted R Square 0.48 Standard Error 4.25 Observations 20 ANOVA df SS MS F Significance F Regression 1 330.35 330.35 18.32 0 Residual 18 324.65 18.04 Total 19 655 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0% Upper 95.0% Intercept 4.81 1.83 2.63 0.02 0.97 8.66 0.97 8.66 X Variable 1 7.05 1.65 4.28 0 3.59 10.51 3.59 10.51 Plot of the data and the curve fit, and plot of the standardized residuals: Example data for outliers in ( x , y ) data pairs e i = Y i - y i e i / S y,x ( Data Analysis -Regression ) 5 10 15 20 25 Column C Column D y -1 0 1 2 3 Column F Column G ei / Sy,x
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
= 2.9 > 2 and this standardized residual is not consistent with its neighbors. so This data point is indeed an outlier. Round 2 - re-do the analysis, but with the outlier removed. [We can only remove one outlier at a time.] i x y Y zero line 1 0 3.7 4 0.3 0.1 0 2 0.1 4.2 4.87 0.67 0.22 0 3 0.2 5.1 5.73 0.63 0.21 0 4 0.3 6.6 6.6 0 0 0 5 0.4 7.4 7.46 0.06 0.02 0 6 0.5 8.9 8.33 -0.57 -0.19 0 7 0.6 10.4 9.19 -1.21 -0.41 0 8 0.7 10.9 10.06 -0.84 -0.28 0 9 0.8 11.9 10.92 -0.98 -0.33 0 10 0.9 11.5 11.79 0.29 0.1 0 11 1 12.2 12.65 0.45 0.15 0 12 1.1 14.7 13.52 -1.18 -0.4 0 13 1.2 15.3 14.38 -0.92 -0.31 0 14 1.3 16.8 15.25 -1.55 -0.52 0 15 1.4 17.2 16.11 -1.09 -0.37 0 16 1.5 5.6 16.98 11.38 3.83 0 17 1.6 19.5 17.84 -1.66 -0.56 0 19 1.8 21.3 19.57 -1.73 -0.58 0 20 1.9 22.5 20.44 -2.06 -0.69 0 Perform a regression analysis to calculate the best-fit straight line through the data: SUMMARY OUTPUT Regression Statistics Multiple R 0.87 R Square 0.75
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 07/23/2008 for the course ME 345 taught by Professor Staff during the Spring '08 term at Pennsylvania State University, University Park.

Page1 / 7

Example_Outliers_data_pairs - Example data for outliers in...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online