{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Example_Outliers_data_pairs

Example_Outliers_data_pairs - Example data for outliers...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
J. M. Cimbala This example is done as an in-class example. i x y Y zero line 1 0 3.7 4.81 1.11 0.26 0 2 0.1 4.2 5.52 1.32 0.31 0 3 0.2 5.1 6.22 1.12 0.26 0 4 0.3 6.6 6.93 0.33 0.08 0 5 0.4 7.4 7.63 0.23 0.05 0 6 0.5 8.9 8.34 -0.56 -0.13 0 7 0.6 10.4 9.04 -1.36 -0.32 0 8 0.7 10.9 9.75 -1.15 -0.27 0 9 0.8 11.9 10.45 -1.45 -0.34 0 10 0.9 11.5 11.16 -0.34 -0.08 0 11 1 12.2 11.86 -0.34 -0.08 0 12 1.1 14.7 12.57 -2.13 -0.5 0 13 1.2 15.3 13.27 -2.03 -0.48 0 14 1.3 16.8 13.98 -2.82 -0.66 0 15 1.4 17.2 14.68 -2.52 -0.59 0 16 1.5 5.6 15.39 9.79 2.3 0 17 1.6 19.5 16.09 -3.41 -0.8 0 18 1.7 4.5 16.8 12.3 2.9 0 19 1.8 21.3 17.5 -3.8 -0.89 0 20 1.9 22.5 18.21 -4.29 -1.01 0 Perform a regression analysis to calculate the best-fit straight line through the data: SUMMARY OUTPUT Regression Statistics Multiple R 0.71 R Square 0.5 Adjusted R Square 0.48 Standard Error 4.25 Observations 20 ANOVA df SS MS F Significance F Regression 1 330.35 330.35 18.32 0 Residual 18 324.65 18.04 Total 19 655 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0% Upper 95.0% Intercept 4.81 1.83 2.63 0.02 0.97 8.66 0.97 8.66 X Variable 1 7.05 1.65 4.28 0 3.59 10.51 3.59 10.51 Plot of the data and the curve fit, and plot of the standardized residuals: Example data for outliers in ( x , y ) data pairs e i = Y i - y i e i / S y,x ( Data Analysis -Regression ) 5 10 15 20 25 Column C Column D y -1 0 1 2 3 Column F Column G ei / Sy,x
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
= 2.9 > 2 and this standardized residual is not consistent with its neighbors. so This data point is indeed an outlier. Round 2 - re-do the analysis, but with the outlier removed. [We can only remove one outlier at a time.] i x y Y zero line 1 0 3.7 4 0.3 0.1 0 2 0.1 4.2 4.87 0.67 0.22 0 3 0.2 5.1 5.73 0.63 0.21 0 4 0.3 6.6 6.6 0 0 0 5 0.4 7.4 7.46 0.06 0.02 0 6 0.5 8.9 8.33 -0.57 -0.19 0 7 0.6 10.4 9.19 -1.21 -0.41 0 8 0.7 10.9 10.06 -0.84 -0.28 0 9 0.8 11.9 10.92 -0.98 -0.33 0 10 0.9 11.5 11.79 0.29 0.1 0 11 1 12.2 12.65 0.45 0.15 0 12 1.1 14.7 13.52 -1.18 -0.4 0 13 1.2 15.3 14.38 -0.92 -0.31 0 14 1.3 16.8 15.25 -1.55 -0.52 0 15 1.4 17.2 16.11 -1.09 -0.37 0 16 1.5 5.6 16.98 11.38 3.83 0 17 1.6 19.5 17.84 -1.66 -0.56 0 19 1.8 21.3 19.57 -1.73 -0.58 0 20 1.9 22.5 20.44 -2.06 -0.69 0 Perform a regression analysis to calculate the best-fit straight line through the data: SUMMARY OUTPUT Regression Statistics Multiple R 0.87 R Square 0.75 Adjusted R Square 0.74 Standard Error 2.97 Observations 19 ANOVA df SS MS F Significance F Regression 1 453.33 453.33 51.4 0 Residual 17 149.95 8.82 Total 18 603.27 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0% Upper 95.0% Intercept
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}